Two feature selection techniques and a multilayer perceptron (MLP) neural network (NN) have been used in this study for human chromosome classification. The first technique is the "knock-out" algorithm and the second is the Principal Component Analysis (PCA). The "knock-out" algorithm emphasized the significance of the centrometric index and of the chromosome length, as features in chromosome classification. The PCA technique demonstrated the importance of retaining most of the image information whenever small training sets are used. However, the use of large training sets enables considerable data compression. Both techniques yield the benefit of using only about 70% of the available features to get almost the ultimate classification performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.