Abstract-A method is described to construct modal fields for an arbitrary one-or two-dimensional refractive index structure. An arbitrary starting field is propagated along a complex axis using the slowly varying envelope approximation (SVEA). By choosing suitable values for the step-size, one mode is maximally increased in amplitude on propagating, until convergence has been obtained. For the calculation of the next mode, the mode just found is filtered out, and the procedure starts again. The method is tested for one-dimensional refractive index structures, both for nonabsorbing and for absorbing structures, and is shown to give fast convergence.
A grating was defined in a silicon nitride waveguide, using a combination of both conventional lithography and laser interference lithography. The structure was optically characterized in the 1520 -1560 nm wavelength range by combining transmission measurements with the analysis of local out-of-plane scattered light, using a high-resolution infrared camera. From the measured power enhancement of the first Bloch-mode resonance above the long-wavelength band edge we estimated a Q > 10 4 and a group velocity of < 0.1 c.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.