There is an ongoing debate about the possible influences of nonnutritive sweeteners (NNS) on body weight. We conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) with NNS to assess their impact on body weight. We systematically searched for RCTs at least 4 weeks in duration, evaluating the effect of NNS on body weight, both in subjects with healthy weight and in subjects with overweight/obesity at any age, and compared the effects of NNS vs caloric and noncaloric comparators. The primary outcome was the difference in body weight between NNS and comparators. Twenty studies were eligible (n = 2914). Participants consuming NNS showed significant weight/BMI differences favouring NNS compared with nonusers. Grouping by nature of comparator revealed that NNS vs placebo/no intervention and NNS vs water produced no effect. When comparing NNS vs sucrose, significant weight/BMI differences appeared favouring NNS. Consumption of NNS led to significantly negative weight/BMI differences in unrestricted energy diets, but not in weight-reduction diets. Participants with overweight/obesity and adults showed significant favourable weight/BMI differences with NNS. Data suggest that replacing sugar with NNS leads to weight reduction, particularly in participants with overweight/obesity under an unrestricted diet, information that could be utilized for evidence-based public policy decisions. K E Y W O R D S artificial sweeteners, body weight, obesity, systematic review
Cardiovascular disease (CVD) is a major cause of mortality in the Republic of Mexico, and metabolic syndrome, a complex of CVD risk factors, is increasingly prevalent. To date, however, there have been few studies of the genetic epidemiology of metabolic syndrome in Mexico. As a first step in implementing the GEMM Family Study, a large, multicenter collaborative study, we recruited 375 individuals in 21 extended families, without ascertainment on disease, at 9 medical institutions across Mexico. Participants were measured for anthropometric (stature, weight, waist circumference) and hemodynamic (blood pressure, heart rate) phenotypes; glucose, cholesterol, and triglyceride levels were measured in fasting blood. Variance components-based quantitative genetic analyses were performed using SOLAR. All phenotypes except diastolic blood pressure were significantly heritable. Consistent with the definition of metabolic syndrome, many phenotypes exhibited significant environmental correlation, and significant genetic correlations were found between measures of adiposity and fasting glucose and fasting triglyceride levels. These preliminary data represent the first heritability estimates for many of these phenotypes in the Republic of Mexico and indicate that this study design offers excellent power for future gene discovery relative to metabolic disease.
Interactions between macrophages and adipocytes are early molecular factors influencing adipose tissue (AT) dysfunction, resulting in high leptin, low adiponectin circulating levels and low-grade metaflammation, leading to insulin resistance (IR) with increased cardiovascular risk. We report the characterization of AT dysfunction through measurements of the adiponectin/leptin ratio (ALR), the adipo-insulin resistance index (Adipo-IRi), fasting/postprandial (F/P) immunometabolic phenotyping and direct F/P differential gene expression in AT biopsies obtained from symptom-free adults from the GEMM family study. AT dysfunction was evaluated through associations of the ALR with F/P insulin-glucose axis, lipid-lipoprotein metabolism, and inflammatory markers. A relevant pattern of negative associations between decreased ALR and markers of systemic lowgrade metaflammation, HOMA, and postprandial cardiovascular risk hyperinsulinemic, triglyceride and GLP-1 curves was found. We also analysed their plasma non-coding microRNAs and shotgun lipidomics profiles finding trends that may reflect a pattern of adipose tissue dysfunction in the fed and fasted state. Direct gene differential expression data showed initial patterns of AT molecular signatures of key immunometabolic genes involved in AT expansion, angiogenic remodelling and immune cell migration. These data reinforce the central, early role of AT dysfunction at the molecular and systemic level in the pathogenesis of IR and immunometabolic disorders.
An altered immune response to pathogens has been suggested to explain increased susceptibility to infectious diseases in patients with diabetes. Recent evidence has documented several immunometabolic pathways in patients with diabetes directly related to the COVID-19 infection. This also seems to be the case for prediabetic subjects with proinflammatory insulin resistance syndrome accompanied with prothrombotic hyperinsulinemic and dysglycemic states. Patients with frank hyperglycemia, dysglycemia and/or hyperinsulinemia develop systemic immunometabolic inflammation with higher levels of circulating cytokines. This deleterious scenario has been proposed as the underlying mechanism enhancing a cytokine storm-like hyperinflammatory state in diabetics infected with severe COVID-19 triggering multi-organ failure. Compared with moderately affected COVID-19 patients, diabetes was found to be highly prevalent among severely affected patients suggesting that this non-communicable disease should be considered as a risk factor for adverse outcomes. The COVID-19 pandemic mirrors with the diabetes pandemic in many pathobiological aspects. Our interest is to emphasize the ties between the immunoinflammatory mechanisms that underlie the morbidity and lethality when COVID-19 meets diabetes. This review brings attention to two pathologies of highly complex, multifactorial, developmental and environmentally dependent manifestations of critical importance to human survival. Extreme caution should be taken with diabetics with suspected symptoms of COVID-19 infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.