<p>O mapeamento de suscetibilidade à inundação é importante para o manejo da dinâmica do uso do solo e, consequentemente, da hidrologia urbana local. O presente estudo produziu o mapa de suscetibilidade à inundação na Bacia do Riacho Fundo, Distrito Federal, utilizando o método estatístico bivariado Razão de Frequência (<em>Frequency Ratio</em>), com 30 pontos de inundação observados em 2018 como pontos de treinamento (71%) e outros 12 pontos de inundação (29%) como pontos de validação para desenvolvimento do modelo. O modelo é composto de 12 fatores de influência: declividade, curvatura, aspecto, hipsometria, distância dos rios, índice de potência de escoamento, índice de transporte de sedimento, índice topográfico de umidade, índice de rugosidade do terreno, índice de escoamento superficial, uso e cobertura do solo e geologia. Todas as variáveis com um tamanho de pixel de 12,5 m x 12,5 m. Os fatores de uso e cobertura do solo e geologia local mostraram-se os mais influentes no modelo. A validação do modelo foi realizada utilizando o método da área sob a curva, com uma acurácia de 85,75%. O estudo mostra que o método pode ser usado para auxiliar no estudo de planos de controle e mitigação de inundação em centros urbanos, como a locação preliminar de bacias de detenção.</p><p><strong>Palavras-chave</strong>: suscetibilidade, inundação, mapeamento, razão de frequência, geoprocessamento.</p><p> </p><p align="center">FLOOD SUSCEPTIBILITY MAPPING USING THE FREQUENCY RATIO METHOD APPLIED TO THE RIACHO FUNDO BASIN - FEDERAL DISTRICT</p><p class="Default"><strong>Abstract</strong><strong></strong></p><p>Flood susceptibility mapping is important to the management of the urban hydrological dynamic and to the studies conducted to prevent the flood-based problems. This study has produced a flood susceptibility map using a bivariate statistical analysis named frequency ratio (FR) model applied in the Riacho Fundo catchment, with 30 flooding locations (71%) for statistical analysis as training dataset and 12 remaining points (29%) were applied to validate the developed model. Twelve conditioning factors were considered in this study: slope, curvature, aspect, elevation, distance to river, stream power index (SPI), sediment transport index (STI), topographic wetness index (TWI), terrain roughness index (TRI), superficial runoff index, land use/land cover (LULC) and geology. All these variables were resampled into 12.5×12.5 m pixel size. The model showed LULC and geology as the most influential factors in flooding. The AUC for success rate was 85.75% with the training points. The study shows the method can be used in studies of plans to mitigate and control flooding in urban centers, as preliminary lease of ponds.</p><p><strong>Keywords</strong>: susceptibility, flooding, mapping, frequency ratio, geoprocessing.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.