This study aimed at investigating how driver's mental workload could be assessed during driving, using driving performance as well as electrophysiological and subjective data. Participants had to follow a lead vehicle at a safe and constant distance and to deal with two particular driving events (overtaking and pedestrian occurrence) within two sessions (baseline and experimental) on a driving simulator. Traffic density and time pressure (overtaking event) and time pressure (pedestrian event) were increased in the experimental session in order to induce a higher workload. Participants filled NASA TLX questionnaire after each driving session. Electrophysiological parameters (SCL, ECG), driving performance (SDLP and response to speed change of the lead vehicle: coherence, delay and gain) were analysed after each event in two temporal windows (30 s and 5 min). Results showed that both performance and physiological variables differed as a function of traffic conditions and time pressure. Moreover, while performance variations were systematically observed over a long period (5 min after the events), effects on mean SCL data obtained from experimental session notably differed from baseline values within 30 s after the events. Results are discussed in term of mental workload and suggestions are made about the safety systems that could monitor driver's mental state.
The influences of task difficulty (index difficulty: 2-4), input device of different length, range of motion and mode of resistance (joystick or rotorcraft stick), and directions of movement (leftward rightward) on motor patterns in a realistic control situation were examined with a multilevel analysis (joint kinematics and muscular variables, and global task performance). Eight subjects controlled the displacements of a virtual object during a slalom task characterized by a realistic inertial model. Pilots adapted the endpoint kinematic organization to increasing accuracy constraints to preserve task success whatever the device and the direction. However, the rotorcraft stick manipulation remains highly complex in comparison to the joystick due to poorer proprioceptive information, higher inertial constraints, and an asymmetrical muscle control.
This study considered two different aspects of the subject’s performance in a realistic situation of speed–accuracy trade-off: the behavioural and motor activity. The necessity for the design of the future ergonomics pointing devices to meet the expectations of the neuromuscular system in order to facilitate their uses is highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.