Abstract:We evaluate the full time dependence of holographic complexity in various eternal black hole backgrounds using both the complexity=action (CA) and the complexity=volume (CV) conjectures. We conclude using the CV conjecture that the rate of change of complexity is a monotonically increasing function of time, which saturates from below to a positive constant in the late time limit. Using the CA conjecture for uncharged black holes, the holographic complexity remains constant for an initial period, then briefly decreases but quickly begins to increase. As observed previously, at late times, the rate of growth of the complexity approaches a constant, which may be associated with Lloyd's bound on the rate of computation. However, we find that this late time limit is approached from above, thus violating the bound. For either conjecture, we find that the late time limit for the rate of change of complexity is saturated at times of the order of the inverse temperature. Adding a charge to the eternal black holes washes out the early time behaviour, i.e. complexity immediately begins increasing with sufficient charge, but the late time behaviour is essentially the same as in the neutral case. We also evaluate the complexity of formation for charged black holes and find that it is divergent for extremal black holes, implying that the states at finite chemical potential and zero temperature are infinitely more complex than their finite temperature counterparts.
We investigate notions of complexity of states in continuous many-body quantum systems. We focus on Gaussian states which include ground states of free quantum field theories and their approximations encountered in the context of the continuous version of the multiscale entanglement renormalization ansatz. Our proposal for quantifying state complexity is based on the Fubini-Study metric. It leads to counting the number of applications of each gate (infinitesimal generator) in the transformation, subject to a statedependent metric. We minimize the defined complexity with respect to momentum-preserving quadratic generators which form suð1; 1Þ algebras. On the manifold of Gaussian states generated by these operations, the Fubini-Study metric factorizes into hyperbolic planes with minimal complexity circuits reducing to known geodesics. Despite working with quantum field theories far outside the regime where Einstein gravity duals exist, we find striking similarities between our results and those of holographic complexity proposals. DOI: 10.1103/PhysRevLett.120.121602 Introduction.-Applications of quantum information concepts to high-energy physics and gravity have recently led to many far-reaching developments. In particular, it has become apparent that special properties of entanglement in holographic [1] quantum field theory (QFT) states are crucial for the emergence of smooth higher-dimensional (bulk) geometries in the gauge-gravity duality [2]. Much of the progress in this direction was achieved by building on the holographic entanglement entropy proposal by Ryu and Takayanagi [3], which geometrizes the von Neumann entropy of a reduced density matrix of a QFT in a subregion in terms of the area of codimension-2 bulk minimal surfaces anchored at the boundary of this subregion (see, e.g., Ref. [4] for a recent overview). However, Ryu-Takayanagi surfaces are often unable to access the whole holographic geometry [5][6][7]. This observation has led to significant interest in novel, from the point of view of quantum gravity, codimension-1 (volume) and codimension-0 (action) bulk quantities, whose behavior suggests conjecturing a link with the information theory notion of quantum state complexity [8][9][10][11][12][13][14]. In fact, a certain identification between complexity and action was originally suggested by Toffoli [15,16] outside the context of holography.
Motivated by holographic complexity proposals as novel probes of black hole spacetimes, we explore circuit complexity for thermofield double (TFD) states in free scalar quantum field theories using the Nielsen approach. For TFD states at t = 0, we show that the complexity of formation is proportional to the thermodynamic entropy, in qualitative agreement with holographic complexity proposals. For TFD states at t > 0, we demonstrate that the complexity evolves in time and saturates after a time of the order of the inverse temperature. The latter feature, which is in contrast with the results of holographic proposals, is due to the Gaussian nature of the TFD state of the free bosonic QFT. A novel technical aspect of our work is framing complexity calculations in the language of covariance matrices and the associated symplectic transformations, which provide a natural language for dealing with Gaussian states. Furthermore, for free QFTs in 1+1 dimension, we compare the dynamics of circuit complexity with the time dependence of the entanglement entropy for simple bipartitions of TFDs. We relate our results for the entanglement entropy to previous studies on non-equilibrium entanglement evolution following quenches. We also present a new analytic derivation of a logarithmic contribution due to the zero momentum mode in the limit of vanishing mass for a subsystem containing a single degree of freedom on each side of the TFD and argue why a similar logarithmic growth should be present for larger subsystems. 1 arXiv:1810.05151v4 [hep-th] 15 Feb 2019 C Matrix generators for Sp(4, R) 87 D Comments on bases 88 E Complexity of formation in the diagonal basis 91 F Minimal geodesics for N degrees of freedom with λ R = 1 95 G Derivation of the TFD covariance matrix in terms of matrix functions 105 References 107
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.