The acceleration of industrial machines mobile parts has been increasing over the last few years, due to the need of higher production in a short period of time. The machines were dimensioned for a lower value of acceleration, which means there is not enough rigidity for the correct operation at much higher accelerations. Nowadays, the accelerations can be near 12 times the acceleration of gravity. There is the need of improving rigidity to make possible the correct machine operation without undesired vibrations that can ultimately lead to failure. The main applications of this work are plotters and laser cutting machines. To improve rigidity, one must improve the relevant material properties, and the relevant geometric variables of the model.[1] A novel Finite Element Model Updating methodology is presented in this paper. The considered models were : a ribbed plate and a tubular beam. The models were built by means of the Finite Element Method (FEM), and MATLAB was used to control the optimization process, using a programming code. Both material properties and geometric parameters were optimized. The main aim of the materials modeling is to know how the value of the objective function changes with the value of the material properties. Materials selection was performed, using material selection charts, to select the best material for the application. The value of these properties was not in the catalogue, and the properties used to perform the material selection were related to a material sub-class, Eg. Steel. The final material selection determined the best specific material for the application, and that material was mechanically tested. The mechanical tests performed were: Tensile Test and Extensometry Test, to obtain the relevant material properties, mainly Young Modulus, Poisson Coefficient and Yield Stress. The deflection of the optimized models reduced strongly in comparison to the initial models.
In this work, several types of reinforcement geometries of hollow-box beams for industrial applications are compared. A novel type of sandwich beams under bending and torsion uncoupled loadings is proposed as the best solution of all those that were studied. For the comparative analysis of the solutions, the models are modelled by the Finite Element Method (FEM) using the commercial software ANSYS Mechanical APDL. The feasibility of the novel beams was assessed by comparing the stiffness behavior of the beams with simple hollow-box beams in terms of deflection. An efficiency parameter was defined in order to determine the relative difference in terms of deflection. It is found that the novel geometries represent a great improvement under bending loadings, better than under torsion loadings. Nevertheless, for bending and torsion combined loadings, if bending stresses are predominant, the beams can still be interesting for some applications, mainly those with mobile parts.
In this work, novel types of internally reinforced hollow-box beams were subjected to bending loading and studied using the finite element analysis software ANSYS. A parameterization of 3 geometric variables was performed, and deflection and effective deflection results were collected from 2 points at the model. The sensitivity analysis results are then discussed, with the aim of concluding if the selected design variables are adequate for optimization purposes.
This paper suggests a methodology based on a neuroevolutionary approach to optimize the use of material in blow molding applications. This approach aims at determining the optimal thickness distribution for a certain blow molded product as a function of its geometry. Multiobjective search is performed by neuroevolution to reflect the conflicting nature of the design problem and to capture some possible trade-offs. During the search, each design alternative is evaluated through a finite element analysis. The coordinates of the mesh elements are the inputs to an artificial neural network whose output determines the thickness for the corresponding location. The proposed approach is applied to the design of an industrial bottle. The results reveal the validity and usefulness of the proposed technique, which was able to distribute the material along the most critical regions to obtain adequate mechanical properties. The approach is general and can be applied to products with different geometries.
In this paper, an experimental validation of a novel beam prototype is performed. Tensile tests, both until rupture and on the elastic domain were done in order to determine the material properties. They were used then in Finite Element Analysis model built in ANSYS Mechanical APDL. Three experimental tests were done to the prototype, and, in order to minimize errors, the average value of the three tests determined, and compared with results obtained from the numerical model. It was shown that it was possible to manufacture the beam by the presented manufacturing methodology. An acceptable correlation between the numerical an experimental results was found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.