The industrial interest in microbial surfactants has intensified in recent years due to the characteristics of these compounds, such as biodegradability, low toxicity, and effectiveness in removing heavy metals and hydrophobic organic compounds from soil and water. This paper describes the production of a biosurfactant by the yeast Candida tropicalis grown in distilled water with 2.5% molasses, 2.5% frying oil and 4% corn steep liquor. The production of the biosurfactant reached 27 g/l in a 50-l bioreactor with a surface tension of 30 mN/m. Surface tension and engine oil emulsification assays demonstrated the stability of biosurfactant under extreme conditions of temperature and pH as well as in the presence of NaCl. Chemical structures of the biosurfactant were identified using GC-MS and NMR. The isolated biosurfactant was characterised as an anionic molecule capable of reducing the surface tension of water from 70 to 30 mN/m at 0.5% of the critical micelle concentration, with no toxic effects on plant seeds or brine shrimp. In tests involving both the crude and isolated biosurfactant for the removal of heavy metals from contaminated sand under dynamic conditions, the removal rates for Zn and Cu ranged from 30 to 80%, while the best removal rate for Pb was 15%. Tests in packed columns also confirmed the ability of biosurfactant to remove Cu and Zn at rates ranging from 45 to 65%. However, lead was not removed under static conditions. The removal kinetics demonstrated that 30 min was sufficient for the removal of metals and a single washing with the biosurfactant achieved greater removal efficiency. The use of the biosurfactant led to a significant reduction in the electrical conductivity of solutions containing heavy metals. The present findings as well as a brief economic analysis suggest the great potential of this agent for industrial remediation processes of soil and water polluted with inorganic contaminants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.