In concept-based summarization, sentence selection is modelled as a budgeted maximum coverage problem. As this problem is NP-hard, pruning low-weight concepts is required for the solver to find optimal solutions efficiently. This work shows that reducing the number of concepts in the model leads to lower ROUGE scores, and more importantly to the presence of multiple optimal solutions. We address these issues by extending the model to provide a single optimal solution, and eliminate the need for concept pruning using an approximation algorithm that achieves comparable performance to exact inference.
Source code reviews are manual, time-consuming, and expensive. Human involvement should be focused on analyzing the most relevant aspects of the program, such as logic and maintainability, rather than amending style, syntax, or formatting defects. Some tools with linting capabilities can format code automatically and report various stylistic violations for supported programming languages. They are based on rules written by domain experts, hence, their configuration is often tedious, and it is impractical for the given set of rules to cover all possible corner cases. Some machine learning-based solutions exist, but they remain uninterpretable black boxes. This paper introduces STYLE-ANALYZER, a new open source tool to automatically fix code formatting violations using the decision tree forest model which adapts to each codebase and is fully unsupervised. STYLE-ANALYZER is built on top of our novel assisted code review framework, LOOKOUT. It accurately mines the formatting style of each analyzed Git repository and expresses the found format patterns with compact human-readable rules. STYLE-ANALYZER can then suggest style inconsistency fixes in the form of code review comments. We evaluate the output quality and practical relevance of STYLE-ANALYZER by demonstrating that it can reproduce the original style with high precision, measured on 19 popular JavaScript projects, and by showing that it yields promising results in fixing real style mistakes. STYLE-ANALYZER includes a web application to visualize how the rules are triggered. We release STYLE-ANALYZER as a reusable and extendable open source software package on GitHub for the benefit of the community.Index Terms-assisted code review, code style, decision tree forest, interpretable machine learning
This paper investigates the possibilities offered by the more and more common availability of scientific video material. In particular it investigates how to best study research results by combining recorded talks and their corresponding scientific articles.To do so, it outlines desired properties of an interesting e-research system based on cognitive considerations and considers related issues. This design work is completed by the introduction of two prototypes.
The way developers collaborate inside and particularly across teams often escapes management's attention, despite a formal organization with designated teams being defined. Observability of the actual, organically formed engineering structure provides decision makers invaluable additional tools to manage their talent pool. To identify existing inter and intra-team interactions-and suggest relevant opportunities for suitable collaborations-this paper studies contributors' commit activity, usage of programming languages, and code identifier topics by embedding and clustering them. We evaluate our findings collaborating with the GitLab organization, analyzing 117 of their open source projects. We show that we are able to restore their engineering organization in broad strokes, and also reveal hidden coding collaborations as well as justify in-house technical decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.