Catalytic enantioselective access to disubstituted functionalized gem-difluorocyclopropanes, which are emerging fluorinated motifs of interest in medicinal chemistry, was achieved through asymmetric transfer hydrogenation of gemdifluorocyclopropenyl esters, catalyzed by a Noyori-Ikariya (p-cymene)-ruthenium(II) complex, with (N-tosyl-1,2-diphenylethylenediamine) as the chiral ligand and isopropanol as the hydrogen donor. The resulting cis-gem-difluorocyclopropyl esters were obtained with moderate to high enantioselectivity (ee = 66-99 %), and post-functionalization reactions enable access to valuable building blocks incorporating a cis-or transgem-difluorocyclopropyl motif.
Catalytic enantioselective access to disubstituted functionalized gem-difluorocyclopropanes, which are emerging fluorinated motifs of interest in medicinal chemistry, was achieved through asymmetric transfer hydrogenation of gemdifluorocyclopropenyl esters, catalyzed by a Noyori-Ikariya (p-cymene)-ruthenium(II) complex, with (N-tosyl-1,2-diphenylethylenediamine) as the chiral ligand and isopropanol as the hydrogen donor. The resulting cis-gem-difluorocyclopropyl esters were obtained with moderate to high enantioselectivity (ee = 66-99 %), and post-functionalization reactions enable access to valuable building blocks incorporating a cis-or transgem-difluorocyclopropyl motif.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.