Decellularized membranes (DM) were obtained from bovine amniotic membranes (BAM) using four different decellularization protocols, based on physical, chemical, and mechanical treatment. The new material was used as a biological scaffold for in vitro skin cell culture. The DM were characterized using hematoxylin-eosin assay, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR-ATR), and differential scanning calorimetry (DSC). The in vitro cytotoxicity of DM was evaluated using MTT. The efficacy of decellularization process was assessed through DNA quantification and electrophoresis. All the used protocols showed a high effectiveness in terms of elimination of native cells, confirmed by DNA extraction and quantification, electrophoresis, and SEM, although protocol IV removes the cellular contents and preserve the native extracellular matrix (ECM) architecture which it can be considered as the most effective in terms of decellularization. FTIR-ATR and DSC on the other hand, revealed the effects of decellularization on the biochemical composition of the matrices. There was no cytotoxicity and the biological matrices obtained were a source of collagen for recellularization. The matrices of protocols I, II, and III were degraded at day 21 of cell culture, forming a gel. The biocompatibility in vitro was demonstrated; hence these matrices may be deemed as potential scaffold for epithelial tissue regeneration.
Scaffolds are widely used in tissue engineering because their manufacture is based on natural and synthetic polymers, which allows them to have properties such as biocompatibility and biodegradability, creating an ideal environment for cell growth on their surface. In this context, among the polymers studied in Tissue Engineering are Chitosan (CH) and Polyvinyl Alcohol (PVA). CH is a versatile polymer obtained from de-acetylation of chitin, which is used for its high biodegradability and biocompatibility, although its mechanical properties must be improved. It has been found that one of the ways to improve the mechanical properties of CH is to mix it with other synthetic polymers such as PVA. PVA is known for its biocompatibility, biodegradability, zero toxicity and ease of preparation due to its solubility in water and excellent mechanical properties, such as tensile strength and ease in the formation of films and barriers. In this study we evaluated the capacity of scaffolds made with CH and PVA in different concentrations (2: 1, 1: 1, 1: 2, respectively) as a possible application in bone regeneration. This was made through different characterization tests such as Infrared Spectroscopy, AFM, Swelling test and Porosity test, where we obtained information about its structural and physicochemical properties. Additionally, a cellular quality control was performed on the material through the MTT assay. The Fourier transform infrared spectroscopy (FTIR) study showed that there are strong intermolecular hydrogen bonds between the chitosan and polyvinyl alcohol molecules. The Swelling and Porosity tests showed favorable results, obtaining maximum values of 5519% and 72.17% respectively. MTT tests determined that the prepared materials are not cytotoxic. These findings suggest that scaffolds possess properties suitable for use in Tissue Engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.