The main goals of this work were to assess whether the topical administration of glucagon-like peptide-1 (GLP-1) could revert the impairment of the neurovascular unit induced by long-term diabetes (24 weeks) in diabetic mice and to look into the underlying mechanisms. For that reason, db/db mice were treated with eye drops of GLP-1 or vehicle for 3 weeks. Moreover, db/+ mice were used as control. Studies performed in vivo included electroretinogramand the assessment of vascular leakage by using Evans Blue. NF-κB, GFAP and Ki67 proteins were analyzed by immunofluorescence (IF). Additionally, caspase 9, AMPK, IKBα, NF-κB, AKT, GSK3, β-catenin, Bcl-xl, and VEGF were analyzed by WB. Finally, VEGF, IL-1β, IL-6, TNF-α, IL-18, and NLRP3 were studied by reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescence. We found that topical administration of GLP-1 reverted reactive gliosis and albumin extravasation, and protected against apoptosis and retinal dysfunction. Regarding the involved mechanisms, GLP-1 exerted an anti-inflammatory action by decreasing NF-κB, inflammosome, and pro-inflammatory factors. In addition, it also decreased VEGF expression. Furthermore, GLP-1 promoted cell survival by increasing the anti-apoptotic protein Bcl-xl and the signaling pathway Akt/GSK3b/β-catenin. Finally, Ki67 results revealed that GLP-1 treatment could induce neurogenesis. In conclusion, the topical administration of GLP-1 reverts the impairment of the neurovascular unit by modulating essential pathways involved in the development of diabetic retinopathy (DR). These beneficial effects on the neurovascular unit could pave the way for clinical trials addressed to confirm the effectiveness of GLP-1 in early stages of DR.
Experimental evidence suggests that endothelin 1 (ET-1) is involved in the development of retinal microvascular abnormalities induced by diabetes. The effects of ET-1 are mediated by endothelin A- and B-receptors (ETA and ETB). Endothelin B-receptors activation mediates retinal neurodegeneration but there are no data regarding the effectiveness of ETB receptor blockage in arresting retinal neurodegeneration induced by diabetes. The main aim of the present study was to assess the usefulness of topical administration of bosentan (a dual endothelin receptor antagonist) in preventing retinal neurodegeneration in diabetic (db/db) mice. For this purpose, db/db mice aged 10 weeks were treated with one drop of bosentan (5 mg/mL, n = 6) or vehicle (n = 6) administered twice daily for 14 days. Six non-diabetic (db/+) mice matched by age were included as the control group. Glial activation was evaluated by immunofluorescence using specific antibodies against glial fibrillary acidic protein (GFAP). Apoptosis was assessed by TUNEL method. A pharmacokinetic study was performed in rabbits. We found that topical administration of bosentan resulted in a significant decrease of reactive gliosis and apoptosis. The results of the pharmacokinetic study suggested that bosentan reached the retina through the trans-scleral route. We conclude that topical administration of bosentan was effective in preventing neurodegeneration in the diabetic retina and, therefore, could be a good candidate to be tested in clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.