Summary The ability to move and hover has made rotary‐wing unmanned aerial vehicles (UAVs) suitable platforms to act as flying communications relays (FCRs), aiming at providing on‐demand, temporary wireless connectivity when there is no network infrastructure available or a need to reinforce the capacity of existing networks. However, since UAVs rely on their on‐board batteries, which can be drained quickly, they typically need to land frequently for recharging or replacing them, limiting their endurance and the flying network availability. The problem is exacerbated when a single FCR UAV is used. The FCR UAV energy is used for two main tasks: Communications and propulsion. The literature has been focused on optimizing both the flying network performance and energy efficiency from the communications point of view, overlooking the energy spent for the UAV propulsion. Yet, the energy spent for communications is typically negligible when compared with the energy spent for the UAV propulsion. In this article, we propose energy‐aware relay positioning (EREP), an algorithm for positioning the FCR taking into account the energy spent for the UAV propulsion. Building upon the conclusion that hovering is not the most energy‐efficient state, EREP defines the trajectory and speed that minimize the energy spent by the FCR UAV on propulsion, without compromising in practice the quality of service offered by the flying network. The EREP algorithm is evaluated using simulations. The obtained results show gains up to 26% in the FCR UAV endurance for negligible throughput and delay degradation.
<p>Unmanned Aerial Vehicles (UAVs) have emerged as suitable platforms for transporting and positioning communications nodes on demand, including Wi-Fi Access Points and cellular Base Stations. This paved the way for the deployment of flying networks capable of temporarily providing wireless connectivity and reinforcing the coverage and capacity of existing networks anywhere, anytime. Several solutions have been proposed in the literature for the positioning of UAVs that act as Flying Access Points (FAPs). Yet, the positioning of Flying Communications Relays (FCRs) in charge of forwarding the traffic to/from the Internet has not received equal attention. A major challenge in flying networks is the UAVs endurance. Since the UAVs are typically powered by on-board batteries with limited capacity, whose energy is used for communications and propulsion, the UAVs need to land frequently for recharging or replacing their batteries, limiting the flying network availability. State of the art works are focused on optimizing both the flying network performance and the energy-efficiency from the communications point of view, but do not consider the energy spent for the UAV propulsion. Yet, the energy spent for communications is typically negligible when compared with the energy spent for the UAV propulsion.</p><p>In order to address the FCR UAV positioning and energy-efficiency challenges, we have proposed the Energy-aware RElay Positioning (EREP) algorithm. EREP defines the trajectory and speed of the FCR UAV that minimize the energy spent for the UAV propulsion. However, since EREP considers a theoretical radio propagation model for computing the minimum Signal-to-Noise Radio (SNR) values that allow to meet the FAPs traffic demand, this may lead to network performance degradation in real-world networking scenarios, especially due to the FCR UAV movement. In this article, we propose the Energy and Performance Aware relay Positioning (EPAP) algorithm. Built upon the EREP algorithm, EPAP defines target performance-aware SNR values for the wireless links established between the FCR UAV and the FAPs and, based on that, computes the trajectory to be completed by the FCR UAV, so that the energy spent for the UAV propulsion is minimized. EPAP was evaluated in terms of both the flying network performance and the FCR UAV endurance, considering multiple networking scenarios. Simulation results show gains up to 25% in the FCR UAV endurance, while not compromising the Quality of Service offered by the flying network.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.