We determine the weakest failure detectors to solve several fundamental problems in distributed message-passing systems, for all environments -i.e., regardless of the number and timing of crashes. The problems that we consider are: implementing an atomic register, solving consensus, solving quittable consensus (a variant of consensus in which processes have the option to decide 'quit' if a failure occurs), and solving non-blocking atomic commit.
Abstract. In the set-agreement problem, n processes seek to agree on at most n−1 different values. This paper determines the weakest failure detector to solve this problem in a message-passing system where processes may fail by crashing. This failure detector, called the Loneliness detector and denoted L, outputs one of two values, "true" or "false" such that:(1) there is at least one process where L outputs always "false", and (2) if only one process is correct, L eventually outputs "true" at this process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.