BackgroundMagnetic resonance data were collected from a diverse population of gravid women to objectively compare the quality of 1.5-tesla (1.5 T) versus 3-T magnetic resonance imaging of the developing human brain. MaZda and B11 computational-visual cognition tools were used to process 2D images. We proposed a wavelet-based parameter and two novel histogram-based parameters for Fisher texture analysis in three-dimensional space.ResultsWavenhl, focus index, and dispersion index revealed better quality for 3 T. Though both 1.5 and 3 T images were 16-bit DICOM encoded, nearly 16 and 12 usable bits were measured in 3 and 1.5 T images, respectively. The four-bit padding observed in 1.5 T K-space encoding mimics noise by adding illusionistic details, which are not really part of the image. In contrast, zero-bit padding in 3 T provides space for storing more details and increases the likelihood of noise but as well as edges, which in turn are very crucial for differentiation of closely related anatomical structures.ConclusionsBoth encoding modes are possible with both units, but higher 3 T resolution is the main difference. It contributes to higher perceived and available dynamic range. Apart from surprisingly larger Fisher coefficient, no significant difference was observed when testing was conducted with down-converted 8-bit BMP images.Electronic supplementary materialThe online version of this article (doi:10.1186/s13104-016-2300-3) contains supplementary material, which is available to authorized users.
Background: Pattern recognition software originally designed for geospatial and other technical applications could be trained by physicians and used as texture-analysis tools for evidence-based practice, in order to improve diagnostic imaging examination during pregnancy.Methods: Various machine-learning techniques and customized datasets were assessed for training of an integrable knowledge-based system (KBS), to determine a hypothetical methodology for texture classification of closely-related anatomical structures in fetal brain magnetic resonance (MR) images. Samples were manually categorized according to the magnetic field of the MRI scanner (i.e. 1.5-tesla (1.5T), 3-tesla (3T)), rotational planes (i.e. coronal, sagittal and axial), and signal weighting (i.e. spin-lattice, spin-spin, relaxation, proton density). In the machine-learning sessions, the operator manually selected relevant regions of interest (ROI) in 1.5/3T MR images. Semi-automatic procedures in MaZda/B11 were performed to determine optimal parameter sets for ROI classification. Four classes were defined: ventricles, thalamus, grey matter, and white matter. Various textures analysis methods were tested. The KBS performed automatic data pre-processing and semi-automatic classification of ROIs.Results: After testing 3456 ROIs, statistical binary classification revealed that combination of reduction techniques with linear discriminant algorithms (LDA) or nonlinear discriminant algorithms (NDA) yielded the best scoring in terms of sensitivity (both 100%, 95% CI: 99.79-100), specificity (both 100%, 95% CI: 99.79-100) and Fisher coefficient (≈E+4, ≈E+5, respectively).Conclusions: LDA and NDA in MaZda can be useful data mining tools for screening a population of interest subjected to a clinical test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.