Nesfatin-1, a satiety molecule processed from nucleobindin2 (NUCB2), is implicated in visceral hypersensitivity in rats and colocalized with 5-hydroxytryptamine (5-HT) in the dorsal raphe nucleus (DRN). Maternal separation (MS) in rats contributes to visceral hypersensitivity via elevated expression of 5-HT in the DRN. Intracerebroventricular injection of nesfatin-1 activates DRN 5-HT neurons. In this study, A model of visceral hypersensitivity was developed by subjecting rats to MS. Colorectal distension was used to detect visceral sensitivity, which was evaluated by abdominal withdrawal reflex (AWR) scores and electromyogram (EMG) magnitude. MS rats exhibited higher AWR scores and EMG magnitude compared with controls. The numbers of nesfatin-1- and tryptophan hydroxylase (TPH, the rate-limiting enzyme for 5-HT synthesis)-positive cells in the DRN were significantly elevated accordingly. Visceral hypersensitivity was significantly alleviated in MS rats treated with intra-DRN administration of anti-nesfatin-1/NUCB2, accompanied by decreased expression of 5-HT and TPH in the DRN, compared with the vehicle-treated group. In contrast, intra-DRN administration of nesfatin-1 into normal adult rats induced visceral hypersensitivity, which correlated with elevated expression of 5-HT and TPH in the DRN. In conclusion, Nesfatin-1 has critical effects on visceral hypersensitivity; the underlying mechanisms might be related to the activation of DRN 5-HT neurons.
Nesfatin-1, a satiety molecule processed from nucleobindin2 (NUCB2), is implicated in visceral hypersensitivity in rats and colocalized with 5-hydroxytryptamine (5-HT) in the dorsal raphe nucleus (DRN). Maternal separation (MS) in rats contributes to visceral hypersensitivity via elevated expression of 5-HT in the DRN. Intracerebroventricular injection of nesfatin-1 activates DRN 5-HT neurons. In this study, A model of visceral hypersensitivity was developed by subjecting rats to MS. Colorectal distension was used to detect visceral sensitivity, which was evaluated by abdominal withdrawal reflex (AWR) scores and electromyogram (EMG) magnitude. MS rats exhibited higher AWR scores and EMG magnitude compared with controls. The numbers of nesfatin-1-and tryptophan hydroxylase (TPH, the rate-limiting enzyme for 5-HT synthesis)-positive cells in the DRN were significantly elevated accordingly. Visceral hypersensitivity was significantly alleviated in MS rats treated with intra-DRN administration of anti-nesfatin-1/NUCB2, accompanied by decreased expression of 5-HT and TPH in the DRN, compared with the vehicle-treated group. In contrast, intra-DRN administration of nesfatin-1 into normal adult rats induced visceral hypersensitivity, which correlated with elevated expression of 5-HT and TPH in the DRN. In conclusion, Nesfatin-1 has critical effects on visceral hypersensitivity; the underlying mechanisms might be related to the activation of DRN 5-HT neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.