The direct electrochemistry of laccase was promoted by Au nanoparticle (AuNP)-encapsulated dendrimers (Den), which was applied for the detection of catechin. To increase the electrical properties, AuNPs were captured in the interiors of the dendrimer (Den-AuNPs) as opposed to attachment at the periphery of dendrimer. To prepare Den-AuNPs, the Au(III) ions were first coordinated in the interior of dendrimer with nitrogen ligands and then reduced to form AuNPs. The size of AuNPs encapsulated within the interior of the dendrimer was determined to be 1.7 +/- 0.4 nm. AuNPs-encapsulated dendrimers were then used to covalently immobilize laccase (PDATT/ Den(AuNPs)/laccase) through the formation of amide bonds between carboxylic acid groups of the dendrimer and the amine groups of laccase. Each layer of the PDATT/Den(AuNPs)/laccase probe was characterized using CV, EIS, QCM, XPS, SEM, and TEM. The PDATT/Den(AuNPs)/laccase probe displayed a well-defined direct electron-transfer (DET) process of laccase. The quasi-reversible redox peak of the Cu redox center of the laccase molecule was observed at -0.03/+0.13 V vs Ag/AgCl, and the electron-transfer rate constant was determined to be 1.28 s (-1). A catechin biosensor based on the electrocatalytic process by direct electrochemistry of laccase was developed. The linear range and the detection limit in the catechin analysis were determined to be 0.1-10 and 0.05 +/- 0.003 microM, respectively. Interference effects from various phenolic and polyphenolic compounds were also studied, and the general applicability of the biosensor was evaluated by selective analysis of real samples of catechin.
Simple and general cancer cell detection methods are required in point-of-care diagnostics. Herein, the interaction between an anticancer drug, daunomycin, and cancer cell membrane components has been studied using an aptamer probe immobilized on a conducting polymer-gold nanoparticle composite film through electrochemical and fluorescence methods and applied to the quantitative detection of cancer cells. The developed method differentiates between cancerous and noncancerous cells effectively.
Dealloyed‐AuNi dendrite anchored on carboxylic acid groups of a conducting polymer is prepared and demonstrated for the catalysis of the oxygen reduction reaction (ORR) and detection of hydrogen peroxide (H2O2) released from living cells. The dendrite formation is initiated on a poly(benzoic acid‐2,2′:5′,2′′‐terthiophene) (pTBA) layer, where the polymer layer acts as a stable substrate to improve the long‐term stability and catalytic activity of the alloy electrode. A co‐deposition of Au and Ni is performed to produce a Ni‐rich Au surface at first; subsequent removal of the surface Ni atoms through electrochemical dealloying enhances the performance of the catalyst because of an increase in the electrochemically active area by 12 times. The hydrodynamic voltammetry of dealloyed‐AuNi@pTBA shows a half‐wave potential at –0.08 V, which is a large shift towards more positive potential when compared to those on AuNi@pTBA (−0.14 V) and commercial Pt/C (–0.12 V) electrodes. The proposed catalytic electrode achieved a superior analytical performance for the detection of trace H2O2 (at –0.15 V) released from cancer and normal cells with a very low detection limit (ca. 5 nM). In addition, the in vitro studies suggest no significant cytotoxicity effect for the dealloyed sample and the viability of the cells are more than 85% even after 48 h of incubation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.