Transparent wood (TW) is an emerging optical material combining high optical transmittance and haze for structural applications. Unlike nonscattering absorbing media, the thickness dependence of light transmittance for TW is complicated because optical losses are also related to increased photon path length from multiple scattering. In the present study, starting from photon diffusion equation, it is found that the angle-integrated total light transmittance of TW has an exponentially decaying dependence on sample thickness. The expression reveals an attenuation coefficient which depends not only on the absorption coefficient but also on the diffusion coefficient. The total transmittance and thickness were measured for a range of TW samples, from both acetylated and nonacetylated balsa wood templates, and were fitted according to the derived relationship. The fitting gives a lower attenuation coefficient for the acetylated TW compared to the nonacetylated one. The lower attenuation coefficient for the acetylated TW is attributed to its lower scattering coefficient or correspondingly lower haze. The attenuation constant resulted from our model hence can serve as a singular material parameter that facilitates cross-comparison of different sample types, at even different thicknesses, when total optical transmittance is concerned. The model was verified with two other TWs (ash and birch) and is in general applicable to other scattering media.
Transparent wood (TW)-based composites are of significant interest for smart window applications. In this research, we demonstrate a facile dual-stimuli-responsive chromic TW where optical properties are reversibly controlled in response to changes in temperature and UV-radiation. For this functionality, bleached wood was impregnated with solvent-free thiol and ene monomers containing chromic components, consisting of a mixture of thermo-and photoresponsive chromophores, and was then UV-polymerized. Independent optical properties of individual chromic components were retained in the compositional mixture. This allowed to enhance the absolute optical transmission to 4 times above the phase change temperature. At the same time, the transmission at 550 nm could be reduced 11−77%, on exposure to UV by changing the concentration of chromic components. Chromic components were localized inside the lumen of the wood structure, and durable reversible optical properties were demonstrated by multiple cycling testing. In addition, the chromic TW composites showed reversible energy absorption capabilities for heat storage applications and demonstrated an enhancement of 64% in the tensile modulus as compared to a native thiol−ene polymer. This study elucidates the polymerization process and effect of chromic components distribution and composition on the material's performance and perspectives toward the development of smart photoresponsive windows with energy storage capabilities.
Developed light transmission model for determining refractive index of wood, complex porous or layered solid materials and composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.