Rolipram has high (PDE4(H)) and low (PDE4(L)) affinities for phosphodiesterase (PDE)-4, respectively. In general, it is believed that inhibitions by PDE4(H) and PDE4(L) are respectively associated with an adverse response and with anti-inflammatory and bronchodilating effects. This has provided a rational basis for designing new compounds with high PDE4(H)/PDE4(L) ratios. In the present study, we attempted to determine the PDE4(H)/PDE4(L) ratios of quercetin (1), qercetin-3-O-methylether (3-MQ, 2), quercetin-3,7,4'-O-trimethylether (ayanin, 3), quercetin-3,7,3',4'-O- tetramethylether (QTME, 4), quercetin-3,5,7,3',4'-O-petamethylether (QPME, 5), quercetin-3,5,7,3',4'-O-pentaacetate (QPA, 6), and quercetin-3-O-methyl-5,7,3',4'-O-tetraacetate (QMTA, 7). The activities of PDE1 approximately 5, which were partially separated from homogenates of guinea pig lungs and hearts, were measured by a two-step procedure using adenosine 3',5'-cyclic monophosphate (cAMP) with [(3) H]-cAMP or guanosine 3',5'-cyclic monophosphate (cGMP) with [(3) H]-cGMP as substrates. The IC(50) values of all of these compounds except quercetin (1), 3-MQ (2), and QMTA (7) on PDE1 approximately 5 inhibition were determined. The anti-inflammatory effects of PDE4 inhibitors were reported to be associated with inhibition of PDE4 catalytic activity. Therefore, these IC(50) values for PDE4 inhibition were taken as the PDE4(L) values. The effective concentration (EC(50)), at which one half of the [(3) H]-rolipram bound to high-affinity rolipram binding sites (HARBSs) of brain cell membranes was replaced, was defined as the PDE4(H) value. In the present results, the PDE4(H)/PDE4(L) ratios of quercetin (1), ayanin (3), and QPME (5) were >30, >19, and 11, respectively (Table 1), which are higher than or equal to that of AWD12-281, the selective PDE4 inhibitor with the greatest potential currently undergoing clinical trials for treating asthma and chronic obstructive pulmonary disease.
We investigated the suppressive effects of 3-O-methylquercetin 5,7,3',4'- O-tetraacetate (QMTA), a more-potent phosphodiesterase (PDE)3/4 inhibitor than quercetin 3-O-methyl ether (3-MQ), which has been reported to have the potential for treating asthma, against ovalbumin (OVA)-induced airway hyperresponsiveness (AHR). The IC50 value of QMTA for PDE3 was significantly less than that for PDE4. According to the Lineweaver-Burk analysis, QMTA (1-10 microM) competitively inhibited PDE3 and PDE4 activities. The Ki values were 0.9+/-0.3 (n=5) and 3.9+/-0.5 (n=5) microM, respectively, which significantly differed from each other, suggesting that QMTA has higher affinity for PDE3 than for PDE4. QMTA (3-10 microM) concentration-dependently relaxed the baseline level, and significantly inhibited cumulative OVA (10-100 microg/mL)-induced contractions in isolated sensitized guinea pig trachealis suggesting that QMTA has bronchodilator and inhibiting effects on mast cell degranulation. After the secondary challenge, the AHR was measured in unrestrained OVA-sensitized mice, with nebulized methacholine (MCh, 6.25-50 mg/mL), by barometric plethysmography using a whole-body plethysmograph. In the present results, QMTA (3-10 micromol/kg, I. P.) dose-dependently attenuated the enhanced pause (Penh) value induced by MCh (25-50 mg/mL). QMTA (3-10 micromol/kg, I. P.) also significantly inhibited total inflammatory cells, macrophages, neutrophils, lymphocytes, and eosinophils in BALF after determination of Penh values. It also significantly suppressed the release of interleukin (IL)-2, IL-4, IL-5, IFN-gamma, and TNF-alpha, with the exception that 3 micromol/kg QMTA did not suppress the releases of IL-5. QMTA even at 1 micromol/kg significantly inhibited eosinophils, IL-2, and TNF-alpha. In conclusion, our results strongly suggest that QMTA has greater potential than 3-MQ for the treatment of asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.