Suppressor of morphogenesis in genitalia 1 (SMG1) and ataxia telangiectasia mutated (ATM) are members of the PI3‐kinase like–kinase (PIKK) family of proteins. ATM is a well‐established tumour suppressor. Loss of one or both alleles of ATM results in an increased risk of cancer development, particularly haematopoietic cancer and breast cancer in both humans and mouse models. In mice, total loss of SMG1 is embryonic lethal and loss of a single allele results in an increased rate of cancer development, particularly haematopoietic cancers and lung cancer. In this study, we generated mice deficient in Atm and lacking one allele of Smg1, Atm−/−Smg1gt/+ mice. These mice developed cancers more rapidly than either of the parental genotypes, and all cancers were haematopoietic in origin. The combined loss of Smg1 and Atm resulted in a higher level of basal DNA damage and oxidative stress in tissues than loss of either gene alone. Furthermore, Atm−/−Smg1gt/+ mice displayed increased cytokine levels in haematopoietic tissues compared with wild‐type animals indicating the development of low‐level inflammation and a pro‐tumour microenvironment. Overall, our data demonstrated that combined loss of Atm expression and decreased Smg1 expression increases haematopoietic cancer development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.