SARS-CoV M gene fragment was cloned and expressed as a recombinant protein fused with a V5 tag at the C-terminus in Vero E6 cells. In addition to un-glycosylated and glycosylated proteins, one product with smaller size initiated in-frame from the third Met residues probably through ribosomal re-initiation was also detected. Translation initiated in-frame from the third Met is unusual since the sequence around the first Met of SARS-CoV M protein contains the optimal consensus Kozak sequence. The function of this smaller translated product awaits further investigation. Similar to other N-glycosylated proteins, glycosylation of SARS-CoV M protein was occurred co-translationally in the presence of microsomes. The SARS-CoV M protein is predicted as a triple-spanning membrane protein lack of a conventional signal peptide. The second and third trans-membrane regions (a.a. 46-68 and 78-100) are predicted to be the primary type helices, which will be able to penetrate into membrane by themselves, while the first trans-membrane region (a.a. 14-36) is predicted to be the secondary type helix, which is considered to be stabilized by the interaction with other trans-membrane segments. As expected, the second and third trans-membrane regions were able to insert a cytoplasmic protein into the endoplasmic reticulum membrane more efficiently than the first one. These results should be important for the study of SARS-CoV morphogenesis.
To understand the molecular mechanisms of viral replication and pathogenesis, it is necessary to establish the virus-host protein interaction networks. The yeast two-hybrid system is a powerful proteomic approach to study protein-protein interactions. After the identification of specific cellular factors interacting with the target viral protein using the yeast two-hybrid screening system, co-immunoprecipitation and confocal microscopy analyses are often used to verify the virus-host protein interactions in cells. Identification of the cellular factors required for viral survival or eliminating virus infected cells could help scientists develop more effective antiviral drugs. Here we summarize a standard protocol used in our lab to study the coronavirus-host protein interactions, including yeast two-hybrid screening, co-immunoprecipitation, and immunofluorescence microscopy analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.