Even as the study of plant genomics rapidly develops through the use of high-throughput sequencing techniques, traditional plant phenotyping lags far behind. Here we develop a high-throughput rice phenotyping facility (HRPF) to monitor 13 traditional agronomic traits and 2 newly defined traits during the rice growth period. Using genome-wide association studies (GWAS) of the 15 traits, we identify 141 associated loci, 25 of which contain known genes such as the Green Revolution semi-dwarf gene, SD1. Based on a performance evaluation of the HRPF and GWAS results, we demonstrate that high-throughput phenotyping has the potential to replace traditional phenotyping techniques and can provide valuable gene identification information. The combination of the multifunctional phenotyping tools HRPF and GWAS provides deep insights into the genetic architecture of important traits.
Since whole-genome sequencing of many crops has been achieved, crop functional genomics studies have stepped into the big-data and high-throughput era. However, acquisition of large-scale phenotypic data has become one of the major bottlenecks hindering crop breeding and functional genomics studies. Nevertheless, recent technological advances provide us potential solutions to relieve this bottleneck and to explore advanced methods for large-scale phenotyping data acquisition and processing in the coming years. In this article, we review the major progress on high-throughput phenotyping in controlled environments and field conditions as well as its use for post-harvest yield and quality assessment in the past decades. We then discuss the latest multi-omics research combining high-throughput phenotyping with genetic studies. Finally, we propose some conceptual challenges and provide our perspectives on how to bridge the phenotype-genotype gap. It is no doubt that accurate high-throughput phenotyping will accelerate plant genetic improvements and promote the next green revolution in crop breeding.
Understanding how plants respond to drought can benefit drought resistance (DR) breeding. Using a non-destructive phenotyping facility, 51 image-based traits (i-traits) for 507 rice accessions were extracted. These i-traits can be used to monitor drought responses and evaluate DR. High heritability and large variation of these traits was observed under drought stress in the natural population. A genome-wide association study (GWAS) of i-traits and traditional DR traits identified 470 association loci, some containing known DR-related genes. Of these 470 loci, 443 loci (94%) were identified using i-traits, 437 loci (93%) co-localized with previously reported DR-related quantitative trait loci, and 313 loci (66.6%) were reproducibly identified by GWAS in different years. Association networks, established based on GWAS results, revealed hub i-traits and hub loci. This demonstrates the feasibility and necessity of dissecting the complex DR trait into heritable and simple i-traits. As proof of principle, we illustrated the power of this integrated approach to identify previously unreported DR-related genes. OsPP15 was associated with a hub i-trait, and its role in DR was confirmed by genetic transformation experiments. Furthermore, i-traits can be used for DR linkage analyses, and 69 i-trait locus associations were identified by both GWAS and linkage analysis of a recombinant inbred line population. Finally, we confirmed the relevance of i-traits to DR in the field. Our study provides a promising novel approach for the genetic dissection and discovery of causal genes for DR.
HighlightA combination of high-throughput leaf phenotyping and genome-wide association analysis provides valuable insights into the genetic basis of rice leaf traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.