Ethylene selectivity in methanol-to-olefin (MTO) catalysis is related to the number of methyl groups on benzene rings trapped in the nanocages of the preferred catalyst HSAPO-34. By correlating the time evolutions of the catalysts' 13C NMR spectra and the volatile product distribution following abrupt cessation of methanol flow, we discovered that (in the absence of other adsorbates) propene is favored by methylbenzenes with four to six methyl groups but ethylene is predominant from those with two or three methyl groups. We substantially increased ethylene selectivity by operating at lower methanol partial pressures or higher temperatures, either of which reduces the steady-state average methyl substitution. As a step toward a kinetic analysis of the MTO reaction on HSAPO-34, we treated each nanocage with a methylbenzene molecule as a supramolecule capable of unimolecular dissociation into ethylene or propene and a less highly substituted methylbenzene. Addition of a water molecule to a nanocage containing a methylbenzene produces a distinct supramolecule with unique properties. Indeed, co-feeding water with methanol significantly increased the average number of methyl groups per ring at steady state relative to identical conditions without additional water, and also increased ethylene selectivity, apparently through transition state shape selectivity.
Using highly purified reagents and careful tests, we show that methanol and dimethyl ether are apparently unreactive on the two most important methanol-to-hydrocarbon catalysts, HZSM-5 and HSAPO-34. Thus, none of the "direct" mechanisms involving two to four carbon atoms in intermediates such as oxonium ylides, carbenes, carbocations, and free radicals are applicable. Only the "indirect" route (hydrocarbon pool) is an established mechanism for this chemistry. An active catalyst requires a hydrocarbon pool that typically begins with products from organic impurities in the feed, carrier gas, or the solid acid itself. Impurities may also play important roles in other reactions catalyzed by solid acids.
Fe‐based oxides have been seldom reported as electrocatalysts for the hydrogen evolution reaction (HER), limited by their weak intrinsic activity and conductivity. Herein, phosphorus doping modulation is used to construct inverse spinel P‐Fe3O4 with dual active sites supported on iron foam (P‐Fe3O4/IF) for alkaline HER with an extremely low overpotential of 138 mV at 100 mA cm−2. The obtained inverse spinel Fe–O–P derived from controllable phosphorization can provide an octahedral Fe site and O atom, which bring about the unusual dissociation mechanisms of two water molecules to greatly accelerate the proton supply in alkaline media. Meanwhile, the ΔGH of the P atom in Fe–O–P as an active site is theoretically calculated to be 0.01 eV. Notably, the NiFe LDH/IF(+)||P‐Fe3O4/IF(−) couple achieves an onset potential of 1.47 V (vs RHE) for overall water splitting, with excellent stability for more than 1000 h at a current density of 1000 mA cm−2, and even for 25 000 s at 10 000 mA cm−2 in 6.0 m KOH at 60 °C. The excellent catalyst stability and low‐cost merits of P‐Fe3O4/IF may hold promise for industrial hydrogen production. This work may reveal a new design strategy of earth‐abundant materials for large‐scale water splitting.
We present new observations of the infrared (IR) spectrum of neutral methanol and neutral and protonated methanol clusters employing IR plus vacuum ultraviolet (vuv) spectroscopic techniques. The tunable IR light covers the energy ranges of 2500-4500 cm(-1) and 5000-7500 cm(-1). The CH and OH fundamental stretch modes, the OH overtone mode, and combination bands are identified in the vibrational spectrum of supersonic expansion cooled methanol (2500-7500 cm(-1)). Cluster size selected IR plus vuv nonresonant infrared ion-dip infrared spectra of neutral methanol clusters, (CH(3)OH)(n) (n=2,[ellipsis (horizontal)],8), demonstrate that the methanol dimer has free and bonded OH stretch features, while clusters larger than the dimer display only hydrogen bonded OH stretch features. CH stretch mode spectra do not change with cluster size. These results suggest that all clusters larger than the dimer have a cyclic structure with OH groups involved in hydrogen bonding. CH groups are apparently not part of this cyclic binding network. Studies of protonated methanol cluster ions (CH(3)OH)(n)H(+) n=1,[ellipsis (horizontal)],7 are performed by size selected vuv plus IR photodissociation spectroscopy in the OH and CH stretch regions. Energies of the free and hydrogen bonded OH stretches exhibit blueshifts with increasing n, and these two modes converge to approximately 3670 and 3400 cm(-1) at cluster size n=7, respectively.
One-step solvothermal synthesis of metal sulfides by combining solvothermal synthesis and sulfuration processes. These sulfides show a high catalytic efficiency for nitrogen reduction reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.