The COVID-19 pandemic triggered a large-scale work-from-home trend globally in recent months. In this paper, we study the phenomenon of "work-from-home" (WFH) by performing social listening. We propose an analytics pipeline designed to crawl social media data and perform text mining analyzes on textual data from tweets scrapped based on hashtags related to WFH in COVID-19 situation. We apply text mining and NLP techniques to analyze the tweets for extracting the WFH themes and sentiments (positive and negative). Our Twitter theme analysis adds further value by summarizing the common key topics, allowing employers to gain more insights on areas of employee concerns due to pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.