This paper discusses optimality conditions for Borwein proper efficient solutions of nonsmooth multiobjective optimization problems with vanishing constraints. A new notion in terms of contingent cone and upper directional derivative is introduced, and a necessary condition for the Borwein proper efficient solution of the considered problem is derived. The concept of ε proper Abadie data qualification is also introduced, and a necessary condition which is called a strictly strong stationary condition for Borwein proper efficient solutions is obtained. In view of the strictly strong stationary condition, convexity of the objective functions, and quasi-convexity of constrained functions, sufficient conditions for the Borwein proper efficient solutions are presented. Some examples are given to illustrate the reasonability of the obtained results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.