The number and spatial configuration of the screws will affect the stability and prognosis of the fractures. In our study, we assessed the biomechanical effects of the double-head cannulated compression screw (DhCCS) and ordinary cannulated compression screw (OCCS) for the treatment of femoral neck fractures by using computer finite element analysis. The original digital imaging and communications in medicine (DICOM)data of a proximal femur were imported into Materialise's interactive medical image control system (MIMICS)software for modeling. Both DhCCS and OCCS 3D-models were obtained by using the 3D scan technique. Using the fracture model and internal fixation assembly model with an inverted triangle, two horizontal and vertical distribution were established in UG software. Next, the displacement and stress distribution were calculated in ANSYS software. The displacement value of the femoral head in the DhCCS group was smaller than that in the OCCS group, and the displacement value in the two horizontal groups was smaller than that in the vertical group. The stress distribution in the DhCCS group was concentrated on the screw rod at the fracture block and thread end, while only at the fracture block in the OCCS group. The stress in the horizontal group was more dispersed on the screws than that in the vertical group. DhCCS has reliable stability for the fixation of femoral neck fractures and applied in the clinical work and 2 horizontal fixation can be used when two screws are selected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.