Summary
Topoisomerase II is a major component of mitotic chromosomes and its unique decatenating activity has been implicated in many aspects of chromosome dynamics, of which chromosome segregation is the most seriously affected by loss of topo II activity in living cells. There is considerable evidence that topo II plays a role at the centromere including: the centromere-specific accumulation of topo II protein; cytogenetic/ molecular mapping of topo II catalytic activity to active centromeres; the influence of sumoylated topo II on sister centromere cohesion; and its involvement in the activation of a Mad2-dependent spindle checkpoint. Using a conditional-lethal DNA topoisomerase IIα mutant human cell line we find that topo IIα depletion, while leading to a disorganised metaphase plate, does not have any overt effect on general kinetochore assembly. Fluorescence in situ hybridisation suggested that centromeres segregate normally, most segregation errors being chromatin bridges involving longer chromosome arms. Strikingly, a linear human X centromere-based minichromosome also displayed a significantly increased rate of missegregation. This sensitivity to topo IIα depletion may be linked to structural alterations within the centromere domain, as indicated by a significant shortening of the distance across metaphase sister centromeres, and the abnormal persistence of PICH-coated connections between segregating chromatids.
DT40 is a B-cell lymphoma-derived avian cell line widely used to study cell autonomous gene function because of the high rates with which DNA constructs are homologously recombined into its genome. Here, we demonstrate that the power of the DT40 system can be extended yet further through the use of RNA interference as an alternative to gene targeting. We have generated and characterized stable DT40 transfectants in which both topo 2 genes have been in situ tagged using gene targeting, and from which the mRNA of both topoisomerase 2 isoforms can be conditionally depleted through the tetracycline-induced expression of short hairpin RNAs. The cell cycle phenotype of topo 2-depleted DT40 cells has been compared with that previously reported for other vertebrate cells depleted either of topo 2α through gene targeting, or depleted of both isoforms simultaneously by transient RNAi. In addition, the DT40 knockdown system has been used to explore whether excess catenation arising through topo 2 depletion is sufficient to trigger the G2 catenation (or decatenation) checkpoint, proposed to exist in differentiated vertebrate cells.
Frequent treatment of the growth-restricted (IUGR) ovine fetus with intra-amniotic IGF-1 increases fetal growth. We aimed to determine whether increased growth was maintained with an extended dosing interval and to examine possible mechanisms. Pregnant ewes were allocated to three groups: Control, and two IUGR groups (induced by placental embolization) treated with weekly intra-amniotic injections of either saline (IUGR) or 360 µg IGF-1 (IGF1). IUGR fetuses were hypoxic, hyperuremic, hypoglycemic, and grew more slowly than controls. Placental glucose uptake and SLC2A1 (GLUT2) mRNA levels decreased in IUGR fetuses, but SLC2A3 (GLUT3) and SLC2A4 (GLUT4) levels were unaffected. IGF-1 treatment increased fetal growth rate, did not alter uterine blood flow or placental glucose uptake, and increased placental SLC2A1 and SLC2A4 (but not SLC2A3) mRNA levels compared with saline-treated IUGR animals. Following IGF-1 treatment, placental mRNA levels of isoforms of the system A, y+, and L amino acid transporters increased 1.3 to 5.0 fold, while the ratio of phosphorylated-mTOR to total mTOR also tended to increase. Weekly intra-amniotic IGF-1 treatment provides a promising avenue for intra-uterine treatment of IUGR babies, and may act via increased fetal substrate supply, up-regulating placental transporters for neutral, cationic, and branched-chain amino acids, possibly via increased activation of the mTOR pathway.
. Effect of pulsatile growth hormone administration to the growth-restricted fetal sheep on somatotrophic axis gene expression in fetal and placental tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.