High success rates in clinical trials on keratoconic corneas suggest the possibility of efficient treatment against myopic progression. This study quantitatively investigated the in vitro ultrastructural effects of a photooxidative collagen cross-linking treatment with photosensitizer riboflavin and UVA light in human corneo-scleral collagen fibrils. A total of 30.8 × 2 mm corneo-scleral strips from donor tissue were sagittally dissected using a scalpel. The five analytic parameters namely fibril density, fibril area, corneo-scleral thickness, fibril diameter, and fibril arrangement were investigated before and after riboflavin-UVA-catalyzed collagen cross-linking treatment. Collagen cross-linking effects were measured at the corneo-scleral stroma and were based on clinical corneal cross-linking procedures. The structural response levels were assessed by histology, digital mechanical caliper measurement, scanning electron microscopy, and atomic force microscopy. Riboflavin-UVA-catalyzed collagen cross-linking treatment led to an increase in the area, density, and diameters of both corneal (110, 112, and 103 %) and scleral (133, 133, and 127 %) stromal collagens. It also led to increases in corneal (107 %) and scleral (105 %) thickness. Collagen cross-linking treatment through riboflavin-sensitized photoreaction may cause structural property changes in the collagen fibril network of the cornea and sclera due to stromal edema and interfibrillar spacing narrowing. These changes were particularly prominent in the sclera. This technique can be used to treat progressive keratoconus in the cornea as well as progressive myopia in the sclera. Long-term collagen cross-linking treatment of keratoconic and myopic progression dramatically improves weakened corneo-scleral tissues.
Abstract. This study examined the effect of the cross-linking with riboflavin-ultraviolet A (UVA) irradiation on the chemical bonds and ultrastructural changes of human sclera tissues using Raman spectroscopy and atomic force microscopy (AFM). Raman spectroscopy of the normal and cross-linked human sclera tissue revealed different types of the riboflavin-UVA and collagen interactions, which could be identified from their unique peaks, intensity, and shape. Raman spectroscopy can prove to be a powerful tool for examining the chemical bond of collagenous tissues at the molecular level. After riboflavin-UVA treatment, unlike a regular parallel arrangement of normal collagen fibrils, the AFM image revealed interlocking arrangements of collagen fibrils. The observed changes in the surface topography of the collagen fibrils, as well as in their chemical bonds in the sclera tissue, support the formation of interfibrilar cross-links in sclera tissues. C 2011 Society of Photo-Optical Instrumentation Engineers (SPIE).
This study examined the surface nanostructures of three orbital implants: nonporous poly(methyl methacrylate) (PMMA), porous aluminum oxide and porous polyethylene. The morphological characteristics of the orbital implants surfaces were observed by atomic force microscopy (AFM). The AFM topography, phase shift and deflection images of the intact implant samples were obtained. The surface of the nonporous PMMA implant showed severe scratches and debris. The surface of the aluminum oxide implant showed a porous structure with varying densities and sizes. The PMMA implant showed nodule nanostructures, 215.56 ± 52.34 nm in size, and the aluminum oxide implant showed crystal structures, 730.22 ± 341.02 nm in size. The nonporous PMMA implant showed the lowest roughness compared with other implant biomaterials, followed by the porous aluminum oxide implant. The porous polyethylene implant showed the highest roughness and severe surface irregularities. Overall, the surface roughness of orbital implants might be associated with the rate of complications and cell adhesion.
This study examined the structures and the elastic and viscous properties of human scleral collagen fibrils by atomic force microscopy (AFM). Sample preparation was performed to minimize the sources of artifacts for further imaging. To observe the morphological and property characteristics of human scleral surfaces, AFM was used as a microscopic tool. The AFM topography, phase shift and deflection images of the dehydrated scleral collagen fibrils were obtained. The visco-elasticity of collagen fibrils was determined from the force-distance curves of the AFM. Inspection of the fibril surface in high resolution showed that the D-period spacing along the collagen fibrils was clearly evident. The fibril diameter over a scan size of 5 x 5 microm2 was 145.22 +/- 17.78 nm (n = 178) ranging from 98 to 220 nm, and the D-periodicity was 69.14 +/- 14.15 nm (n = 189), which is similar to the normal 67 nm D-periodicity. Force-distance analysis indicated that human scleral collagen had comparatively high adhesion force and elasticity, to protect the eye from external trauma and to withstand the expansive force made by the intraocular pressure.
The aim of this study was to quantitatively investigate the morphologies (surface roughness) and biomechanical properties (Young's modulus) of human anterior lens capsules (ALCs) for noncataract and cataract groups using atomic force microscopy. Eight human ALCs obtained during phacoemulsification from patients with senile cataracts (72 ± 13 years) were investigated in both the hydrated and dehydrated conditions. The cataract group showed clearly the proliferated lens epithelial cells (LECs) with a monomorphic cell structure, a diameter of 12.54 ± 4.31 μm, and a height of 0.23 ± 0.04 μm, whereas the control group showed no LECs. A substantial amount of false-positive calcification was observed caused by the deposition of remnants of dried salt solution. Cataract group showed significantly higher surface roughness (382.06 nm, p ≤ 0.001) than control group in the anterior side of ALCs, whereas cataract group showed significantly lower surface roughness (353.79 nm, p ≤ 0.001) than control group in their posterior side. Cataract group showed significantly higher Young's modulus (69.52 kPa, p ≤ 0.001) compared to the control group, regardless of the ALC side. Therefore, it is significant that this study provides a new method to examine the nanostructural characteristic and biomechanical property of human ALCs through a nanometer-scale resolution microscopy technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.