The P450 eicosanoids epoxyeicosatrienoic acids (EETs) are produced in brain and perform important biological functions, including protection from ischemic injury. The beneficial effect of EETs, however, is limited by their metabolism via soluble epoxide hydrolase (sEH). We tested the hypothesis that sEH inhibition is protective against ischemic brain damage in vivo by a mechanism linked to enhanced cerebral blood flow (CBF). We determined expression and distribution of sEH immunoreactivity (IR) in brain, and examined the effect of sEH inhibitor 12-(3-adamantan-1-yl-ureido)-dodecanoic acid butyl ester (AUDA-BE) on CBF and infarct size after experimental stroke in mice. Mice were administered a single intraperitoneal injection of AUDA-BE (10 mg/kg) or vehicle at 30 mins before 2-h middle cerebral artery occlusion (MCAO) or at reperfusion, in the presence and absence of P450 epoxygenase inhibitor N-methylsulfonyl-6-(2-propargyloxyphenyl) hexanamide (MS-PPOH). Immunoreactivity for sEH was detected in vascular and non-vascular brain compartments, with predominant expression in neuronal cell bodies and processes. 12-(3-Adamantan-1-yl-ureido)-dodecanoic acid butyl ester was detected in plasma and brain for up to 24 h after intraperitoneal injection, which was associated with inhibition of sEH activity in brain tissue. Finally, AUDA-BE significantly reduced infarct size at 24 h after MCAO, which was prevented by MS-PPOH. However, regional CBF rates measured by iodoantipyrine (IAP) autoradiography at end ischemia revealed no differences between AUDA-BE- and vehicle-treated mice. The findings suggest that sEH inhibition is protective against ischemic injury by non-vascular mechanisms, and that sEH may serve as a therapeutic target in stroke.
Sustained cardiac hypertrophy represents one of the most common causes leading to cardiac failure. There is emerging evidence to implicate the involvement of NF-B in the development of cardiac hypertrophy. However, several critical questions remain unanswered. We tested the use of soluble epoxide hydrolase (sEH) inhibitors as a means to enhance the biological activities of epoxyeicosatrienoic acids (EETs) to treat cardiac hypertrophy. sEH catalyzes the conversion of EETs to form the corresponding dihydroxyeicosatrienoic acids. Previous data have suggested that EETs may inhibit the activation of NF-B-mediated gene transcription. We directly demonstrate the beneficial effects of several potent sEH inhibitors (sEHIs) in cardiac hypertrophy. Specifically, we show that sEHIs can prevent the development of cardiac hypertrophy using a murine model of pressureinduced cardiac hypertrophy. In addition, sEHIs reverse the preestablished cardiac hypertrophy caused by chronic pressure overload. We further demonstrate that these compounds potently block the NF-B activation in cardiac myocytes. Moreover, by using in vivo electrophysiologic recordings, our study shows a beneficial effect of the compounds in the prevention of cardiac arrhythmias that occur in association with cardiac hypertrophy. We conclude that the use of sEHIs to increase the level of the endogenous lipid epoxides such as EETs may represent a viable and completely unexplored avenue to reduce cardiac hypertrophy by blocking NF-B activation.epoxyeicosatrienoic acids ͉ NF-B
The soluble epoxide hydrolase appears to be a promising target for the development of antihypertensive therapies based on a previously unexplored mechanism of action. Epoxide hydrolases are enzymes that add water to three membered cyclic ethers known as epoxides. The soluble epoxide hydrolase in mammalian systems (sEH) is a member of the alpha/beta-hydrolase fold family of enzymes and it shows a high degree of selectivity for epoxides of fatty acids. The regioisomeric epoxides of arachidonic acid or epoxyeicosanoids (EETs) are particularly good substrates. These EETs appear to be major components of the endothelium-derived hyperpolarizing factors (EDHFs). As such, EETs cause vasodilation and reduce blood pressure. The EETs also are strongly anti-inflammatory and analgesic. By inhibiting sEH, the increase in circulating EETs leads to a reduction in blood pressure in a number of animal models. Potent transition state mimic inhibitors have been developed for the sEH. Some of these sEH inhibitors (sEHIs) show nanomolar to picomolar potency and good pharmacokinetic properties. Because of their unique mode of action they show promise in treating hypertension while reducing problems with end organ failure, vascular inflammation and diabetes. Indeed, the anti-inflammatory properties of the sEHI may make them particularly suitable for treating hypertension in patients with other concomitant metabolic syndromes. They are more potent on a molar basis than most nonsteroidal anti-inflammatory drugs (NSAIDs) in reducing PGE2 in inflammation models, they strongly synergize with NSAIDs, and appear to ameliorate apparently unfavorable eicosanoid profiles associated with some cyclo-oxygenase-2 inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.