Purpose Epstein-Barr virus (EBV) is associated with several cancers in which the tumour cells express EBV antigens EBNA1 and LMP2. A therapeutic vaccine comprising a recombinant vaccinia virus, MVA-EL, was designed to boost immunity to these tumour antigens. A phase I trial was conducted to demonstrate the safety and immunogenicity of MVA-EL across a range of doses. Experimental Design Sixteen patients in the United Kingdom (UK) with EBV-positive nasopharyngeal carcinoma (NPC), received three intradermal vaccinations of MVA-EL at 3-weekly intervals at dose levels between 5×107 and 5×108 plaque forming units (pfu). Blood samples were taken at screening, after each vaccine cycle and during the post-vaccination period. T-cell responses were measured using IFNγ ELISpot assays with overlapping EBNA1/LMP2 peptide mixes or HLA-matched epitope peptides. Polychromatic flow cytometry was used to characterize functionally responsive T-cell populations. Results Vaccination was generally well-tolerated. Immunity increased after vaccination to at least one antigen in 8/14 patients (7/14, EBNA1; 6/14, LMP2), including recognition of epitopes that vary between EBV strains associated with different ethnic groups. Immunophenotypic analysis revealed that vaccination induced differentiation and functional diversification of responsive T-cell populations specific for EBNA1 and LMP2 within the CD4 and CD8 compartments respectively. Conclusions MVA-EL is safe and immunogenic across diverse ethnicities and thus suitable for use in trials against different EBV-positive cancers globally as well as in South East Asia where NPC is most common. The highest dose (5×108 pfu) is recommended for investigation in current phase IB and II trials.
Epstein-Barr virus (EBV) is associated with several malignancies including nasopharyngeal carcinoma, a high incidence tumor in Chinese populations, in which tumor cells express the two EBV antigens EB nuclear antigen 1 (EBNA1) and latent membrane protein 2 (LMP2). Here, we report the phase I trial of a recombinant vaccinia virus, MVA-EL, which encodes an EBNA1/LMP2 fusion protein designed to boost T-cell immunity to these antigens. The vaccine was delivered to Hong Kong patients with nasopharyngeal carcinoma to determine a safe and immunogenic dose. The patients, all in remission more than 12 weeks after primary therapy, received three intradermal MVA-EL vaccinations at three weekly intervals, using five escalating dose levels between 5 Â 10 7 and 5 Â 10 8 plaque-forming unit (pfu). Blood samples were taken during prescreening, immediately before vaccination, one week afterward and at intervals up to one year later. Immunogenicity was tested by IFN-g ELIspot assays using complete EBNA1 and LMP2 15-mer peptide mixes and known epitope peptides relevant to patient MHC type. Eighteen patients were treated, three per dose level one to four and six at the highest dose, without dose-limiting toxicity. T-cell responses to one or both vaccine antigens were increased in 15 of 18 patients and, in many cases, were mapped to known CD4 and CD8 epitopes in EBNA1 and/or LMP2. The range of these responses suggested a direct relationship with vaccine dose, with all six patients at the highest dose level giving strong EBNA1/LMP2 responses. We concluded that MVA-EL is both safe and immunogenic, allowing the highest dose to be forwarded to phase II studies examining clinical benefit. Cancer Res; 73(6); 1676-88. Ó2012 AACR.
Acute malaria is associated with sustained increase in EBV load and, possibly, a transient decrease in EBV-specific T cell surveillance. We infer that the unusually high set point of virus carriage in P. falciparum-challenged populations, allied with the parasite's capacity to act as a chronic B cell stimulus, probably contributes to the pathogenesis of endemic BL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.