Publisher rights This is the author's version of a work that was accepted for publication in Materials & Design. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Materials & Design, Vol. 46, 04/2013 General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Mobile robots are expected to traverse on unstructured terrain, especially uneven terrain, or to climb obstacles or slopes. This paper analyzes one such passively–actively transformable mobile robot that is principally aimed at the above issue. A passive locomotion traverses on a rough and flat terrain; an active reconfiguration with an active suspension. This paper investigates the lateral stability of this mobile robot when it reconfigures itself to adjust its roll angle with the active suspension. The principles and configurations of the robot and its active suspension are presented. To analyze the effects of the suspensions’ inputs on robot stability, a mathematic model of the robot on side slopes is presented. Based on the evaluation method of the stability pyramid theory, an analytical expression representing the relationship between the input of the active suspension (linear actuator length) and stability evaluation index on transverse slopes is obtained. The results show that there is an increase in both the lateral stability and minimum lateral tip-over angle under different ground clearances when adjusting the active inputs. Furthermore, the models presented here provide theoretical references and optimization directions for the design and control of mobile robots with adjustable suspensions.
Variable-diameter wheels balance the high mobility and limited volume of a planetary rover. Moreover, these wheels allow a rover to adjust its body attitude to adapt to rough terrains. These functions are achieved through the expansion–retraction motion of the variable-diameter mechanisms in the wheels. Thus, the traditional wheel design focuses on these mechanisms. To further facilitate its application, we propose a new concept variable-diameter wheel that considers the mechanism characteristics and wheel performances. This new wheel configuration is presented along with the corresponding transmission system, design, and analysis methods. Kinematic equations of the mechanism were established and then applied to synthesize the wheel dimensions. The load–deflection relationship of the wheels was analytically derived by developing a modified pseudo-rigid-body model (PRBM). Finite element analysis (FEA) simulations were performed to validate the design and analysis. In conclusion, the proposed novel wheel is extremely beneficial for rough-terrain locomotion systems. Furthermore, the design and analysis approaches used in this study are applicable for other expandable wheels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.