With the explosive growth of information resources in the age of big data, mankind has gradually fallen into a serious “information overload” situation. In the face of massive data, collaborative filtering algorithm plays an important role in information filtering and information refinement. However, the recommendation quality and efficiency of collaborative filtering recommendation algorithms are low. The research combines the improved artificial bee colony algorithm with K-means algorithm and applies them to the recommendation system to form a collaborative filtering recommendation algorithm. The experimental results show that the MAE value of the new fitness function is 0.767 on average, which has good separation and compactness in clustering effect. It shows high search accuracy and speed. Compared with the original collaborative filtering algorithm, the average absolute error value of this algorithm is low, and the running time is only 50 s. It improves the recommendation quality and ensures the recommendation efficiency, providing a new research path for the improvement of collaborative filtering recommendation algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.