A closed‐loop system that can mini‐invasively track blood glucose and intelligently treat diabetes is in great demand for modern medicine, yet it remains challenging to realize. Microneedles technologies have recently emerged as powerful tools for transdermal applications with inherent painlessness and biosafety. In this work, for the first time to the authors' knowledge, a fully integrated wearable closed‐loop system (IWCS) based on mini‐invasive microneedle platform is developed for in situ diabetic sensing and treatment. The IWCS consists of three connected modules: 1) a mesoporous microneedle‐reverse iontophoretic glucose sensor; 2) a flexible printed circuit board as integrated and control; and 3) a microneedle‐iontophoretic insulin delivery component. As the key component, mesoporous microneedles enable the painless penetration of stratum corneum, implementing subcutaneous substance exchange. The coupling with iontophoresis significantly enhances glucose extraction and insulin delivery and enables electrical control. This IWCS is demonstrated to accurately monitor glucose fluctuations, and responsively deliver insulin to regulate hyperglycemia in diabetic rat model. The painless microneedles and wearable design endows this IWCS as a highly promising platform to improve the therapies of diabetic patients.
This work proposes and validates a novel idea of using plasmonic nanoparticles (PNP) to improve the solar thermal conversion efficiency. Gold nanoparticle (GNP) is synthesized from an improved citrate-reduction method, and used as an example to illustrate the photothermal conversion characteristics of PNPs under a solar simulator. The experimental results show that GNP has the best photo-thermal conversion capability comparing to other reported materials. At the lowest particle concentration examined (i.e., 0.15 ppm), GNP increases the photo-thermal conversion efficiency of the base fluid by 20% and reaches a specific absorption rate (SAR) of ~10 kW/g. The photo-thermal conversion efficiency increases with increasing particle concentrations, but the SAR shows a reverse trend, which is unexpected as all GNPs should be still in the independent scattering regime.
Patterning and alignment of conductive nanowires are essential for good electrical isolation and high conductivity in various applications. Herein a facile bottom-up, additive technique is developed to pattern and align silver nanowires (AgNWs) by manipulating wetting of dispersions in microchannels. By forming hydrophobic/hydrophilic micropatterns down to 8 μm with fluoropolymer (Cytop) and SiO2, the aqueous AgNW dispersions with the optimized surface tension and viscosity self-assemble into microdroplets and then dry to form anisotropic AgNW networks. The alignment degree characterized by the full width at half-maximum (FWHM) can be well-controlled from 39.8° to 84.1° by changing the width of microchannels. A mechanism is proposed and validated by statistical analysis on AgNW alignment, and a static model is proposed to guide the patterning of general NWs. The alignment reduced well the electrical resistivity of AgNW networks by a factor of 5 because of the formation of efficient percolation path for carrier conduction.
Recently gold nanoparticles (GNPs) have been proposed in non-invasive thermal therapies for cancer treatment coupled with radiofrequency (RF) waves. In this work, the dissipation of RF energy by GNPs is systematically investigated both experimentally and theoretically under an EM frequency of 13.56 MHz. To elucidate the impurity effect, purified GNP dispersions are obtained through an ultrasonic-aided method. The result reveals a small bulk temperature increase, i.e., less than one centigrade for impurified samples, and even smaller for purified samples, which contrasts significantly to some earlier publications. The measured dielectric properties of GNP dispersions show a negligible change in the effective conductivities for purified samples, which indicates that the dielectric loss alone does not predict substantial temperature increase of GNPs. Further discussion shows that none of the established theories supports the idea that GNPs can dissipate RF energy significantly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.