Research issues and data mining techniques for product recommendation and viral marketing have been widely studied. Existing works on seed selection in social networks do not take into account the effect of product recommendations in e-commerce stores. In this paper, we investigate the seed selection problem for viral marketing that considers both effects of social influence and item inference (for product recommendation). We develop a new model, Social Item Graph (SIG), that captures both effects in form of hyperedges. Accordingly, we formulate a seed selection problem, called Social Item Maximization Problem (SIMP), and prove the hardness of SIMP. We design an efficient algorithm with performance guarantee, called Hyperedge-Aware Greedy (HAG), for SIMP and develop a new index structure, called SIG-index, to accelerate the computation of diffusion process in HAG. Moreover, to construct realistic SIG models for SIMP, we develop a statistical inference based framework to learn the weights of hyperedges from data. Finally, we perform a comprehensive evaluation on our proposals with various baselines. Experimental result validates our ideas and demonstrates the effectiveness and efficiency of the proposed model and algorithms over baselines.
Friending recommendation has successfully contributed to the explosive growth of on-line social networks. Most friending recommendation services today aim to support passive friending, where a user passively selects friending targets from the recommended candidates. In this paper, we advocate recommendation support for active friending, where a user actively specifies a friending target. To the best of our knowledge, a recommendation designed to provide guidance for a user to systematically approach his friending target, has not been explored in existing on-line social networking services. To maximize the probability that the friending target would accept an invitation from the user, we formulate a new optimization problem, namely, Acceptance Probability Maximization (APM), and develop a polynomial time algorithm, called Selective Invitation with Tree and In-Node Aggregation (SITINA), to find the optimal solution. We implement an active friending service with SITINA in Facebook to validate our idea. Our user study and experimental results manifest that SITINA outperforms manual selection and the baseline approach in solution quality efficiently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.