Hepatocellular carcinoma (HCC) accounts for approximately 85%-90% of primary liver cancers. Based on in silico analysis, differentially expressed long non-coding RNA (lncRNA) LINC01224 in HCC, the downstream microRNA (miRNA) miR-330-5p, and its target gene checkpoint kinase 1 (CHEK1) were selected as research subjects. Herein, this study was designed to evaluate their interaction effects on the malignant phenotypes of HCC cells. LINC01224 and CHEK1 were upregulated and miR-330-5p was downregulated in HCC cells. miR-330-5p shared negative correlations with LINC01224 and CHEK1, and LINC01224 shared a positive correlation with CHEK1. Notably, LINC01224 could specifically bind to miR-330-5p, and CHEK1 was identified as a target gene of miR-330-5p. When LINC01224 was silenced or miR-330-5p was elevated, the sphere and colony formation abilities and proliferative, migrative, and invasive potentials of HCC cells were diminished, while cell cycle arrest and apoptosis were enhanced. Moreover, LINC01224 induced HCC progression in vitro and accelerated tumor formation in nude mice by increasing CHEK1 expression.The key findings of the present study demonstrated that silencing LINC01224 could downregulate the expression of CHEK1 by competitively binding to miR-330-5p, thus inhibiting HCC progression. This result highlights the LINC01224/miR-330-5p/CHEK1 axis as a novel molecular mechanism involved in the pathology of HCC.
Background
Hepatocellular carcinoma (HCC) is one of the most common tumors globally, with varying prevalence based on endemic risk factors. Bone morphogenetic protein (BMP) exhibits a broad spectrum of biological activities in various tissues including angiogenesis. Here, this study aimed to investigate the mechanism of BMP2 in HCC by mediating the mitogen-activated protein kinase (MAPK)/p38 signaling pathway.
Methods
BMP2 expression was quantified in HCC and adjacent tissues. BMP2 gain- and loss-of-function experiments were conducted by infection with lentivirus over-expressing BMP2 or expressing shRNA against BMP2. The angiogenesis was evaluated with HepG2 cells co-cultured with ECV304 cells. SB-239063 was applied to inhibit the activation of the MAPK/p38 signaling pathway so as to identify the significance of this pathway in HCC progression. Finally, in vivo experiments were conducted to identify the role of BMP2 and the MAPK/p38 signaling pathway in tumor growth and angiogenesis.
Results
BMP2 was highly expressed in HCC. Over-expression of BMP2 was found to accelerate cell proliferation, migration, invasion, microvascular density, and angiogenesis and decrease cell apoptosis in vitro and in vivo. BMP2 silencing exhibited inhibitory effects on HCC cell invasion and angiogenesis. The co-culture system illustrated that HepG2 cells secreted BMP2 in ECV304, and silenced BMP2 in HepG2 cells resulted in the inactivation of the MAPK/p38 signaling pathway, thus suppressing cancer progression, tumor growth, and angiogenesis in HCC.
Conclusion
Taken together, the key findings of this study propose that silencing of BMP2 inhibits angiogenesis and tumor growth in HCC, highlighting BMP2 silencing as a potential strategy for the treatment of HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.