Magnetic reconnection, topological change in magnetic fields, is a fundamental process in magnetized plasmas. It is associated with energy release in regions of magnetic field annihilation, but this is only one facet of this process. Astrophysical fluid flows normally have very large Reynolds numbers and are expected to be turbulent, in agreement with observations. In strong turbulence magnetic field lines constantly reconnect everywhere and on all scales, thus making magnetic reconnection an intrinsic part of the turbulent cascade. We note in particular that this is inconsistent with the usual practice of regarding magnetic field lines as persistent dynamical elements. A number of theoretical, numerical, and observational studies starting with the Lazarian & Vishniac 1999 paper proposed that 3D turbulence makes magnetic reconnection fast and that magnetic reconnection and turbulence are intrinsically connected. In particular, we discuss the dramatic violation of the textbook concept of magnetic flux-freezing in the presence of turbulence. We demonstrate that in the presence of turbulence the plasma effects are subdominant to turbulence as far as the magnetic reconnection is concerned. The latter fact justifies an MHD-like treatment of magnetic reconnection on all scales much larger than the relevant plasma scales. We discuss numerical and observational evidence supporting the turbulent reconnection model. In particular, we demonstrate that the tearing reconnection is suppressed in 3D and, unlike the 2D settings, 3D reconnection induces turbulence that makes magnetic reconnection independent of resistivity. We show that turbulent reconnection dramatically affects key astrophysical processes, e.g. star formation, turbulent dynamo, acceleration of cosmic rays. We provide criticism of the concept of "reconnection-mediated turbulence" and explain why turbulent reconnection is very different from enhanced turbulent resistivity and hyper-resistivity, and why the latter have fatal conceptual flaws.
Two-dimensional electromagnetic particle-in-cell simulations in a magnetized, homogeneous, collisionless electron-proton plasma demonstrate the forward cascade of whistler turbulence. The simulations represent decaying turbulence, in which an initial, narrowband spectrum of fluctuations at wavenumbers kc∕ωe≃0.1 cascades toward increased damping at kc∕ωe≃1.0, where c∕ωe is the electron inertial length. The turbulence displays magnetic energy spectra that are relatively steep functions of wavenumber and are anisotropic with more energy in directions relatively perpendicular to the background magnetic field Bo=x̂Bo than at the same wavenumbers parallel to Bo. In the weak turbulence regime, the primary new results of the simulations are as follows: (1) Magnetic spectra of the cascading fluctuations become more anisotropic with increasing fluctuation energy; (2) the wavevector dependence of the three magnetic energy ratios, ∣δBj∣2∕∣δB∣2 with j=x,y,z, show good agreement with linear dispersion theory for whistler fluctuations; (3) the magnetic compressibility summed over the cascading modes satisfies 0.3≲∣δBx∣2∕∣δB∣2≲0.6; and (4) the turbulence heats electrons in directions both parallel and perpendicular to Bo, with stronger heating in the parallel direction.
We present self-consistent cosmological magnetohydrodynamic (MHD) simulations that simultaneously follow the formation of a galaxy cluster and the magnetic field ejection by an active galactic nucleus (AGN). We find that the magnetic fields ejected by the AGNs, though initially distributed in relatively small volumes, can be transported throughout the cluster and be further amplified by the intracluster medium (ICM) turbulence during the cluster formation process. The ICM turbulence is shown to be generated and sustained by the frequent mergers of smaller halos. Furthermore, a cluster-wide dynamo process is shown to exist in the ICM and amplify the magnetic field energy and flux. The total magnetic energy in the cluster can reach ∼10 61 erg while micro Gauss (μG) fields can distribute over ∼ Mpc scales throughout the whole cluster. This finding shows that magnetic fields from AGNs, being further amplified by the ICM turbulence through small-scale dynamo processes, can be the origin of cluster-wide magnetic fields.
We carried out two-dimensional, high-resolution simulations to study the effect of dust feedback on the evolution of vortices induced by massive planets in protoplanetary disks. Various initial dust to gas disk surface density ratios (0.001-0.01) and dust particle sizes (Stokes number 4 × 10 −4 -0.16) are considered. We found that while dust particles migrate inward, vortices are very effective at collecting them. When dust density becomes comparable to gas density within the vortex, a dynamical instability is excited and it alters the coherent vorticity pattern and destroys the vortex. This dust feedback effect is stronger with a higher initial dust/gas density ratio and larger dust grain. Consequently, we found that the disk vortex lifetime can be reduced up to a factor of 10. We discuss the implications of our findings on the survivability of vortices in protoplanetary disks and planet formation.
We use extensive global two-dimensional hydrodynamic disk gas+dust simulations with embedded planets, coupled with three dimensional radiative transfer calculations, to model the dust ring and gap structures in the HL Tau protoplanetary disk observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We include the selfgravity of disk gas and dust components and make reasonable choices of disk parameters, assuming an already settled dust distribution and no planet migration. We can obtain quite adequate fits to the observed dust emission using three planets with masses 0.35, 0.17, and 0.26 M Jup at 13.1, 33.0, and 68.6 AU, respectively. Implications for the planet formation as well as the limitations of this scenario are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.