In this study, two auxiliary collectors (methyl naphthalene and naphthalene) of molybdenite and the traditional collector (kerosene) were mixed for molybdenite flotation, respectively. According to the selection and analysis of the auxiliary collector, it was found that the surface energy (γC= 4.50 mJ/m2) of the polycyclic aromatic hydrocarbons is very close to that (γS= 42.55 mJ/m2) of the molybdenite {100} surface. Therefore, it can be physically adsorbed onto the molybdenite {100} surface according to the principle of similar compatibility. Batch flotation was conducted on actual ore with the mixed collector, compared with kerosene alone. Batch flotation results showed that the mixed collector at a mass ratio of 95:5 of main collector to auxiliary collector at pH 11.0 improved molybdenite flotation, that is, the Mo recovery was increased by 3–4%. The practical application feasibility of the auxiliary collector was analyzed by the filtration speed of the flotation concentrate and the crystal resolution characteristics of the auxiliary collector. The results show that solid naphthalene (Nap) is easy to crystallize at low temperature and adhere to the surface of the flotation concentrate, resulting in a decrease of filtration velocity, while liquid methylnaphthalene (MNap) does not crystallize at low temperature. These results imply that the mixed collector Kerosene/MNap can generate a superior synergistic effect and achieve better collecting capacity than kerosene alone, resulting in the increase of flotation recovery by 3–4 percentage points. Moreover, the addition of MNap has little negative impact on the subsequent treatment of the product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.