Inner ear hair cells (HCs) detect sound through the deflection of mechanosensory stereocilia. Stereocilia are inserted into the cuticular plate of HCs by parallel actin rootlets, where they convert sound-induced mechanical vibrations into electrical signals. The molecules that support these rootlets and enable them to withstand constant mechanical stresses underpin our ability to hear. However, the structures of these molecules have remained unknown. We hypothesized that αII- and βII-spectrin subunits fulfill this role, and investigated their structural organization in rodent HCs. Using super-resolution fluorescence imaging, we found that spectrin formed ring-like structures around the base of stereocilia rootlets. These spectrin rings were associated with the hearing ability of mice. Further, HC-specific, βII-spectrin knockout mice displayed profound deafness. Overall, our work has identified and characterized structures of spectrin that play a crucial role in mammalian hearing development.
The vasoconstrictor and/or pressor effects of prostaglandin (PG)F2α participate in the development of vascular pathologies and limit the clinical use of the agent. This study aimed to determine the receptor types responsible for the vasoconstrictor activity of PGF2α and whether they mediate the pressor response evoked by the prostanoid under in vivo conditions. Experiments were performed on genetically altered mice and/or on vessels from these mice or humans. Here we show that deletion of the thromboxane‐prostanoid receptor (TP−/−) abolished or drastically diminished the contraction to PGF2α in isolated mouse vessels (some of which were resistance arteries) and reduced the elevation in blood pressure evoked by the prostanoid under in vivo conditions. In accordance, TP antagonism abolished the contraction in small arteries of human omentum. Further deletion of E prostanoid receptor type 3 (EP3−/−) removed the PGF2α‐evoked contraction that remained in some TP−/− arteries and added to the effect of TP−/− on the elevation in blood pressure evoked by the prostanoid under in vivo conditions. In contrast, the uterine contraction to PGF2α mediated via the F prostanoid receptor (FP) was unaltered in TP−/−/EP3−/− mice. These results demonstrate that the non‐FP receptors TP and/or EP3 mediate the vasoconstrictor and pressor effects of PGF2α, which are still of concern under clinical conditions.—Liu, B., Li, J., Yan, H., Tian, D., Li, H., Zhang, Y., Guo, T., Wu, X., Luo, W., Zhou, Y. TP and/or EP3 receptors mediate the vasoconstrictor and pressor responses of prostaglandin F2α in mice and/or humans. FASEB J. 33, 2451–2459 (2019). http://www.fasebj.org
Generalized anxiety disorder (GAD) and panic disorder (PD) are most common anxiety disorders with high lifetime prevalence while the pathophysiology and disease-specific alterations still remain largely unclear. Few studies have taken a whole-brain perspective in the functional connectivity (FC) analysis of these two disorders in resting state. It limits the ability to identify regionally and psychopathologically specific network abnormalities with their subsequent use as diagnostic marker and novel treatment strategy. The whole brain FC using a novel FC metric was compared, that is, scaled correlation, which they demonstrated to be a reliable FC statistics, but have higher statistical power in two-sample t-test of whole brain FC analysis. About 21 GAD and 18 PD patients were compared with 22 matched control subjects during resting-state, respectively. It was found that GAD patients demonstrated increased FC between hippocampus/parahippocampus and fusiform gyrus among the most significantly changed FC, while PD was mainly associated with greater FC between somatosensory cortex and thalamus. Besides such regional specificity, it was observed that psychopathological specificity in that the disrupted FC pattern in PD and GAD correlated with their respective symptom severity. The findings suggested that the increased FC between hippocampus/parahippocampus and fusiform gyrus in GAD were mainly associated with a fear generalization related neural circuit, while the greater FC between somatosensory cortex and thalamus in PD were more likely linked to interoceptive processing. Due to the observed regional and psychopathological specificity, their findings bear important clinical implications for the potential treatment strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.