Genetic methods of manipulating or eradicating disease vector populations have long been discussed as an attractive alternative to existing control measures because of their potential advantages in terms of effectiveness and species specificity1–3. The development of genetically engineered malaria-resistant mosquitoes has shown, as a proof-of-principle, the possibility of targeting the mosquito’s ability to serve as a disease vector4–7. The translation of these achievements into control measures requires an effective technology to spread a genetic modification from laboratory mosquitoes to field populations8. We have previously suggested that homing endonuclease genes (HEGs), a class of simple selfish genetic elements, could be exploited for this purpose9. Here we demonstrate that a synthetic genetic element, consisting of mosquito regulatory regions10 and the homing endonuclease gene I-SceI11–13, can substantially increase its transmission to the progeny in transgenic mosquitoes of the human malaria vector Anopheles gambiae. We show that the I-SceI element is able to rapidly invade receptive mosquito cage populations, validating mathematical models for the transmission dynamics of HEGs. Molecular analyses confirm that expression of I-SceI in the male germline induces high rates of site-specific chromosomal cleavage and gene conversion, which results in the gain of the I-SceI gene, and underlies the observed genetic drive. These findings demonstrate a new mechanism by which genetic control measures can be implemented. Our results also show in principle how sequence-specific genetic drive elements like HEGs could be used to take the step from the genetic engineering of individuals to the genetic engineering of populations.
We propose a new, simple but powerful algorithm to analyze the gamma-ray burst temporal structures based on identifying non-statistical variations ("peaks") in the time histories. Detailed analyses of the bursts from the third BATSE catalog show that ∼ 30 bursts have more than 20 peaks individually.Upon identifying most of the peaks in those bursts, we show that the peak fluence S i and peak interval δ i distributions within each burst are consistent with log-normal distributions. Furthermore, we show that Gaussian (in linear space) and power-law distributions for peak fluences are ruled out, as is the Poisson distribution for peak intervals.
Ophiocordyceps sinensis is one of the best known fungi in Traditional Chinese Medicine. Many efforts have been devoted to locating the production areas of this species resulting in various reports; however, its geographic distribution remains incompletely understood. Distribution of O. sinensis at the county level is clarified in this work based on both a literature search and fieldwork. More than 3600 publications related to O. sinensis were investigated, including scientific papers, books, and online information. Herbarium specimens of O. sinensis and field collections made by this research group during the years 2000-2010 were examined to verify the distribution sites. A total of 203 localities for O. sinensis have been found, of which 106 are considered as confirmed distribution sites, 65 as possible distribution sites, 29 as excluded distribution sites and three as suspicious distribution sites. The results show that O. sinensis is confined to the Tibetan Plateau and its surrounding regions, including Tibet, Gansu, Qinghai, Sichuan, and Yunnan provinces in China and in certain areas of the southern flank of the Himalayas, in the countries of Bhutan, India and Nepal, with 3,000 m as the lowest altitude for the distribution. The fungus is distributed from the southernmost site in Yulong Naxi Autonomous County in northwestern Yunnan Province to the northernmost site in the Qilian Mountains in Qilian County, Qinghai Province, and from the east edge of the Tibetan Plateau in Wudu County, Gansu Province to the westernmost site in Uttarakhand, India. The clarification of the geographic distribution of O. sinensis will lay the foundation for conservation and sustainable use of the species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.