Space debris detection is vital to space missions and space situation awareness. Convolutional neural networks are introduced to detect space debris due to their excellent performance. However, noisy labels, caused by false alarms, exist in space debris detection, and cause ambiguous targets for the training of networks, leading to networks overfitting the noisy labels and losing the ability to detect space debris. To remedy this challenge, we introduce label-noise learning to space debris detection and propose a novel label-noise learning paradigm, termed Co-correcting, to overcome the effects of noisy labels. Co-correcting comprises two identical networks, and the predictions of these networks serve as auxiliary supervised information to mutually correct the noisy labels of their peer networks. In this manner, the effect of noisy labels can be mitigated by the mutual rectification of the two networks. Empirical experiments show that Co-correcting outperforms other state-of-the-art methods of label-noise learning, such as Co-teaching and JoCoR, in space debris detection. Even with a high label noise rate, the network trained via Co-correcting can detect space debris with high detection probability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.