Delivery of arsenic trioxide (ATO), a clinical anticancer drug, has drawn much attention to improve its pharmacokinetics and bioavailability for efficient cancer therapy. Real-time and in situ monitoring of ATO behaviors in vivo is highly desirable for efficient tumor treatment. Herein, we report an ATO-based multifunctional drug delivery system that efficiently delivers ATO to treat tumors and allows real-time monitoring of ATO release by activatable T1 imaging. We loaded water-insoluble manganese arsenite complexes, the ATO prodrug, into hollow silica nanoparticles to form a pH-sensitive multifunctional drug delivery system. Acidic stimuli triggered the simultaneous release of manganese ions and ATO, which dramatically increased the T1 signal (bright signal) and enabled real-time visualization and monitoring of ATO release and delivery. Moreover, this smart multifunctional drug delivery system significantly improved ATO efficacy and strongly inhibited the growth of solid tumors without adverse side effects. This strategy has great potential for real-time monitoring of theranostic drug delivery in cancer diagnosis and therapy.
Substantial evidence has shown that epithelial-mesenchymal transition (EMT) plays critical roles in colorectal cancer (CRC) development and prognosis. To uncover the pivotal regulators that function in the cooperative interactions between cancer cells and their microenvironment and consequently affect the EMT process, we carried out a systematic analysis and evaluated prognosis in CRC specimens. Tumor buds and their surrounding stroma were captured using laser microdissection. We used gene expression profiling, bioinformatics analysis and regulatory network construction for molecular selection. The clinical significance of potential biomarkers was investigated. We identified potential EMT biomarkers, including BGN, MMP1, LGALS1, SERPINB5, and TM4SF4, all of which participated in the integrated pathway of TGFβ/Snail with TNFα/NFκB. We also found that BGN, MMP1, LGALS1, SERPINB5 and TM4SF4 were related to CRC patient prognosis. Patients with higher expression of these individual potential biomarkers had poorer prognosis. Among the identified biomarkers, BGN and TM4SF4 are reported, for the first time, to probably be involved in the EMT process and to predict CRC prognosis. Our results strongly suggest that the integrated pathway of TGFβ/Snail with TNFα/NFκB may be the principal axis that links cancer cells to their microenvironment during the EMT process and results in poor prognosis in CRC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.