Reactive astrogliosis is an early event in Alzheimer's disease (AD) brain and plays a key role in synaptic degeneration in AD development. Zinc accumulates in extracellular fraction and synaptosomes in AD human brains with its effect on reactive astrocytes remaining unknown. Through Western blotting, Quantitative polymerase chain reaction (qPCR), and immunofluorescence detection on primary astrocytes treated by zinc and/or zinc chelator, we revealed that zinc induced harmful A1‐type reactive astrogliosis in cultured primary astrocytes; the latter, promoted synaptic degeneration in primary neurons. The mechanism investigation showed that zinc induced activation of extracellular regulated protein kinase (ERK) and Janus kinase 2 (JAK2), which phosphorylated signal transduction and transcription activator 3 (Stat3) at serine 727 (S727‐Stat3) and tyrosine 705 (Y705‐Stat3), respectively, resulting in activation of Stat3. Stat3 phosphorylation at S727 by ERK plays a key role in zinc‐induced astrogliosis. These data imply a new molecular mechanism of reactive astrogliosis in AD, in which excessive zinc activates Stat3 through up‐regulating ERK signaling pathway.
Zinc is essential for human growth and development. As a trace nutrient, zinc plays important roles in numerous signal transduction pathways involved in distinct physiologic or pathologic processes. Protein phosphorylation is a posttranslational modification which regulates protein activity, degradation, and interaction with other molecules. Protein kinases (PKs) and phosphatases (PPs), with their effects of adding phosphate to or removing phosphate from certain substrates, are master regulators in controlling the phosphorylation of proteins. In this review, we summarize the disturbance of zinc homeostasis and role of zinc disturbance in regulating protein kinases and protein phosphatases in neurodegenerative diseases, with the focus of that in Alzheimer’s disease, providing a new perspective for understanding the mechanisms of these neurologic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.