Detection of surface defects is critical in quality control of reflective optics. In this note, we propose a new surface defect detection method for reflective optics using the normalized reflectivity, which is calculated from the signal intensity of a chromatic confocal surface profiler. This detection method first scans the surface to acquire signal intensity data and then models the intensity data to calculate the normalized local reflectivity map. The reflectivity map is further processed by threshold segmentation to extract defects from normal areas. Measurement experiments on an Al-coated concave reflector with artificial defects were carried out to demonstrate the feasibility of the method. This detection method can provide existing optical surface profilers with defect detecting capabilities without extra equipment.
Spiral scanning is a high-efficiency scanning mode for surface profile measurement systems. The most important priority to realize the spiral scanning mode is to accurately align the measuring probe with the rotational centre of the spindle. This paper proposes a novel centre alignment method of the measuring probe, which is considered to be suitable for any type of spiral scanning surface measurement systems. The proposed method, which only needs a tilted flat mirror as the artefact, makes the time-consuming centre alignment process of the measuring probe become much easier and faster. The operational steps of the proposed method are presented. Experiments have also been carried out based on a self-developed optical profiler with spiral scanning operation to verity the feasibility of the proposed method. The experimental results show that the proposed method is capable of conducting a fast alignment (only takes 3 min) while maintaining a high alignment accuracy. Evaluation of the alignment accuracy shows that the centering error is less than 10 µm on the mechanical guide rail stage and about 1.7 µm on the air-bearing stage.
A new prototype non-contact profiler based on surface tracking has been specially developed. Surface tracking is carried out by a specially designed dual stage probe system with the aid of a four-Degree Of Freedom high-precision motion platform. The dual stage probe system keeps a short-range optical probe constantly tracking the surface by a self-developed voice coil motor servo, by which a wide measuring range of up to 10 mm is realized. The system performance evaluation including resolution, repeatability, and scanning speed proved the good capability of the new prototype non-contact profiler. To realize a full area covered 3D profile measurement of special-shaped optics within one scanning procedure, a signal intensity monitor integrated in the surface tracking controller is specially developed. In the experiment, a snip-single-corner-rectangular-shaped freeform surface was successfully measured over full area by the new non-contact profiler. This work provides an effective solution for 3D profile measurement of special-shaped optical surfaces over full reflecting area. Experimental results demonstrate that the proposed measuring system is of great significance in quality evaluation of optical surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.