Epigallocatechin gallate (EGCG) and kaempferol exhibit cellular antioxidant activity; however, their interactive effects in terms of antioxidant actions and underlying mechanisms remain unclear. In this study, their cytoprotective effects were examined against 2,2-azobis (2-amidinopropane) dihydrochloride solution (ABAP)-induced oxidative stress in HepG2 cells. The results showed that the median effective dose (EC50) of the EGCG and kaempferol (6:1.5, c/c) combination was 3.4 ± 0.1 μg/mL, with a combination index (CIavg) value of 0.54, which represented a significant synergistic effect. Further experiments proved that the combined pretreatment with EGCG and kaempferol exerted protective effects by suppressing reactive oxygen species (ROS) generation, upregulating cellular antioxidant enzyme activities (superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px)) in a dose-dependent manner. The mechanism of synergistic antioxidant effects of EGCG combined with kaempferol may be due to the up-regulation of higher antioxidant enzyme activities that improve the antioxidant capacities and balance the cell oxidative stress. The synergistic antioxidant effect of EGCG and kaempferol can provide a theoretical basis for the development of formulas of functional food ingredients.
Poor temperature management along a cold chain leads to fruit quality deterioration and loss. In order to determine the threshold value of temperature fluctuation in a cold chain, peach fruits were stored in four different virtual cold chains applying different temperature–time scenarios. Core temperature profiling, the physicochemical qualities, and the activities of the peaches’ antioxidant enzymes were monitored during cold storage and shelf life. Abusive temperature management (temperature increased to 20 and 15 °C three times) resulted in a significant increase in a peach’s core temperature to the highest temperature measured: 17.6 °C. The ethylene production rate at the end of the shelf life of peaches under these temperatures was 21.03–28.16% higher than the constant-temperature group and accompanied by significantly lower levels of flesh firmness, titratable acid content, total phenol and flavonoid content, and peroxidase (POD) and catalase (CAT) activities (p < 0.05). The results of a principal component analysis (PCA) and heatmap confirmed the results. Limited temperature increases (10 °C) in a cold chain had little impact on the quality of the peaches, while temperature increases higher than 15 °C three times would negatively affect the quality of the peaches significantly. The temperature of a cold chain needs to be controlled precisely to reduce the loss of peaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.