Although micro hybrid propulsion (MHP) systems are recognized as a feasible solution for off-highway construction machines (OHCMs), there is still a lack of understanding how existing MHP technologies can be transferred effectively from the automotive sector to the construction sector. To fill this gap, this paper is the first of a two-part study which focuses on micro hybrid construction machines paying attention to a novel idle-stop-start control (ISSC) strategy. Part A presents the system concepts and design procedure while Part B studies on a hardware-in-the-loop test platform for a comprehensive analysis on the potential fuel/emission saving of the proposed system in real-time. In this study-Part A-different types of OHCMs are briefly discussed to identify the target machine. The procedure to model the machine powertrain is also concisely introduced. Next, to minimize the fuel consumption and emissions without degrading the machine performance, a prediction-based idle-stop-start control (PISSC) approach is properly designed. The core of the PISSC is to estimate online the future engine working state changes in order to directly shut down the engine or shift it to low power regions during idle periods. Numerical simulations have been carried out to validate the potential of the proposed PISSC method.
Micro hybrid propulsion (MHP) technologies have emerged as promising solutions for minimisation of fuel consumption and pollutant emissions of off-highway construction machines (OHCMs). Their performance and economic feasibility strongly depend on the way they utilize the idle-stop-start control (ISSC) concept. The ISSC design process and performance evaluation are particularly challenging due to the peculiar structures and dynamics of OHCMs compared to other vehicles and, therefore, require significant development time and efforts. This paper is the second of a two-part study focusing on prediction-based idle-start-stop control (PISSC) for micro hybrid OHCMs. In part A, the powertrain model and the procedure to design the PISSC system have been presented. The PISSC-based engine control performance has been investigated through numerical simulations with the designed model. In this Part B, a hardware-in-the-loop (HIL) test platform is established in HIL Control Laboratory for the rapid validation of the proposed technique in terms of the fuel/pollutant emission saving in real-time. First, the powertrain architecture and PISSC algorithm presented in Part A are briefly reviewed. Second, the process to build the HIL test platform is clearly stated. Third, experiments and analysis are carried out for a number of comparative studies to validate the superiority and practical applicability of the PISSC approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.