We report initial results from studies using sweep imaging with Fourier transformation (SWIFT) to detect superparamagnetic iron oxide (SPIO) particle-labeled stem cells in the rat heart. In experiments performed on phantoms containing titanium balls or SPIO-labeled cells, frequency-shifted signals surrounding the paramagnetic objects produced a pileup artifact visualized by SWIFT. Total signal intensity was retained to a much greater extent by SWIFT as compared to gradient echo imaging. SWIFT imaging of excised and in vivo hearts showed (a) reduced blooming artifact as compared with gradient echo imaging, which helped reduce ambiguity in the detection of SPIO-labeled cells; (b) enhancement of off-resonance signals relative to the background in the imaginary component of images; and (c) detailed myocardial anatomy in magnitude images, which provided anatomic reference. These features suggest SWIFT can facilitate the detection of SPIO-laden cells in the cardiovascular system.
Purpose:To use magnetic resonance (MR) imaging and positron emission tomography (PET) dual detection of cardiacgrafted embryonic stem cells (ESCs) to examine (a) survival and proliferation of ESCs in normal and infarcted myocardium, (b) host macrophage versus grafted ESC contribution to serial MR imaging signal over time, and (c) cardiac function associated with the formation of grafts and whether improvement in cardiac function is related to cardiac differentiation of ESCs. Materials and Methods:All animal procedures were approved by the institutional animal care and use committee. Murine ESCs were stably transfected with a mutant version of herpes simplex virus type 1 thymidine kinase, HSV1-sr39tk, and also were labeled with superparamagnetic iron oxide (SPIO) particles. Cells were injected directly in the border zone of the infarcted heart or in corresponding regions of normal hearts in athymic rats. PET and MR imaging were performed longitudinally for 4 weeks in the same animals. Results:ESCs survived and underwent proliferation in the infarcted and normal hearts, as demonstrated by serial increases in 9-(4-[ 18 F]fluoro-3-hydroxymethylbutyl) guanine PET signals. In parallel, the hypointense areas on MR images at the injection sites decreased over time. Double staining for host macrophages and SPIO particles revealed that the majority of SPIO-containing cells were macrophages at week 4 after injection. Left ventricular ejection fraction increased in the ESC-treated rats but decreased in culture media-treated rats, and border-zone function was preserved in ESC-treated animals; however, cardiac differentiation of ESCs was less than 0.5%. Conclusion:Dual-modality imaging permits complementary information in regard to cell survival and proliferation, graft formation, and effects on cardiac function. RSNA, 2009 Supplemental Note: This copy is for your personal, non-commercial use only. To order presentation-ready copies for distribution to your colleagues or clients, use the Radiology Reprints form at the end of this article. Coronary heart disease accounts for 36% of all cardiovascular death and is the leading cause of heart failure in the United States (1). Although postinfarction survival rates have been improved, congestive heart failure caused by a large infarction or progressive unfavorable ventricular remodeling remains a major problem (2). Despite that cardiac transplantation is currently the most effective therapy, the disparity between organ demand and supply limits its applicability. A treatment strategy often referred to as "cellular cardiomyoplasty" is an attempt at cardiac repair through local (intramyocardial, intracoronary) or systemic (intravenous) delivery of a variety of cells, including fetal or neonatal cardiomyocytes, cardiac cells derived from adult atrial appendages, skeletal myoblasts, embryonic stem cells (ESCs), or bone marrow-derived mesenchymal and hematopoietic stem cells. The strategy is based on the potential of these cells to differentiate into cardiomyocytes to repopulate the ...
OBJECTIVE:The optimal strategy for fluid management during gastrointestinal surgery remains unclear. Minimizing the variation in arterial pulse pressure, which is induced by mechanical ventilation, is a potential strategy to improve postoperative outcomes. We tested this hypothesis in a prospective, randomized study with lactated Ringer's solution and 6% hydroxyethyl starch solution.METHOD:A total of 60 patients who were undergoing gastrointestinal surgery were randomized into a restrictive lactated Ringer's group (n = 20), a goal-directed lactated Ringer's group (n = 20) and a goal-directed hydroxyethyl starch group (n = 20). The goal-directed fluid treatment was guided by pulse pressure variation, which was recorded during surgery using a simple manual method with a Datex Ohmeda S/5 Monitor and minimized to 11% or less by volume loading with either lactated Ringer's solution or 6% hydroxyethyl starch solution (130/0.4). The postoperative flatus time, the length of hospital stay and the incidence of complications were recorded as endpoints.RESULTS:The goal-directed lactated Ringer's group received the greatest amount of total operative fluid compared with the two other groups. The flatus time and the length of hospital stay in the goal-directed hydroxyethyl starch group were shorter than those in the goal-directed lactated Ringer's group and the restrictive lactated Ringer's group. No significant differences were found in the postoperative complications among the three groups.CONCLUSION:Monitoring and minimizing pulse pressure variation by 6% hydroxyethyl starch solution (130/0.4) loading during gastrointestinal surgery improves postoperative outcomes and decreases the discharge time of patients who are graded American Society of Anesthesiologists physical status I/II.
BackgroundWomen are more susceptible to major depressive disorder (MDD). A possible explanation is that women have a trait tendency to engage in a ruminative response style. Depending on cognitive model of depression, attention bias, memory bias and self-referential bias were closely related among depressed patients. Previous studies have explored the neural mechanism of the cognitive biases by using amplitude of low frequency fluctuations (ALFF) or functional connectivity (FC), and few combined these two metrics, especially focusing on female patients.MethodsWe assessed 25 female patients diagnosed with MDD and 13 well matched healthy controls (HCs) using Rs-fMRI. Two metrics ALFF and FC based on abnormal ALFF were explored and made comparisons.ResultsCompared with HCs, female patients with MDD showed that one cluster with significantly decreased ALFF in the left middle occipital gyrus(L-MOG). Furtherly we founded depressed female subjects showed significantly lower FC between the L-MOG seed and left orbitofrontal cortex, and significantly higher FC between the L-MOG seed and left medial prefrontal gyrus and left hippocampus.ConclusionsOur results showed L-MOG may act as a connection, which involved in the processing of cognitive biases of MDD by connected with limbic-cortical regions in resting state. These findings may enhance the understanding of the neurobiological mechanism in female patients with MDD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.