SUMMARY Mushroom body (MB) dependent olfactory learning in Drosophila provides a powerful model to investigate memory mechanisms. MBs integrate olfactory conditioned stimuli (CS) inputs with neuromodulatory reinforcement (unconditioned stimuli, US) [1, 2], which for aversive learning is thought to rely on dopaminergic (DA) signaling [3–6] to DopR, a D1-like dopamine receptor expressed in MB [7, 8]. A wealth of evidence suggests the conclusion that parallel and independent signaling occurs downstream of DopR within two MB neuron cell types, with each supporting half of memory performance. For instance, expression of the rutabaga adenylyl cyclase (rut) in γ neurons is sufficient to restore normal learning to rut mutants [9] whereas expression of Neurofibromatosis I (NFI) in α/β neurons is sufficient to rescue NF1 mutants [10, 11]. DopR mutations are the only case where memory performance is fully eliminated [7], consistent with the hypothesis that DopR receives the US inputs for both γ and α/β lobe traces. We demonstrate, however, that DopR expression in γ neurons is sufficient to fully support short (STM) and long-term memory (LTM). We argue that DA-mediated CS-US association is formed in γ neurons followed by communication between γ and α/β neurons to drive consolidation.
The brain represents sensory information in the coordinated activity of neuronal ensembles. Although the microcircuits underlying olfactory processing are well characterized in Drosophila, no studies to date have examined the encoding of odor identity by populations of neurons and related it to the odor specificity of olfactory behavior. Here we used two-photon Ca 2ϩ imaging to record odor-evoked responses from Ͼ100 neurons simultaneously in the Drosophila mushroom body (MB). For the first time, we demonstrate quantitatively that MB population responses contain substantial information on odor identity. Using a series of increasingly similar odor blends, we identified conditions in which odor discrimination is difficult behaviorally. We found that MB ensemble responses accounted well for olfactory acuity in this task. Kenyon cell ensembles with as few as 25 cells were sufficient to match behavioral discrimination accuracy. Using a generalization task, we demonstrated that the MB population code could predict the flies' responses to novel odors. The degree to which flies generalized a learned aversive association to unfamiliar test odors depended upon the relative similarity between the odors' evoked MB activity patterns. Discrimination and generalization place different demands on the animal, yet the flies' choices in these tasks were reliably predicted based on the amount of overlap between MB activity patterns. Therefore, these different behaviors can be understood in the context of a single physiological framework.
The mammalian aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that mediates the toxic effects of dioxins and related compounds. Dioxins have been shown to cause a range of neurological defects, but the role of AHR during normal neuronal development is not known. Here we investigate the developmental functions of ahr-1, the Caenorhabditis elegans aryl hydrocarbon receptor homolog. We show that ahr-1:GFP is expressed in a subset of neurons, and we demonstrate that animals lacking ahr-1 function have specific defects in neuronal differentiation, as evidenced by changes in gene expression, aberrant cell migration, axon branching, or supernumerary neuronal processes. In ahr-1-deficient animals, the touch receptor neuron AVM and its sister cell, the interneuron SDQR, exhibit cell and axonal migration defects. We show that dorsal migration of SDQR is mediated by UNC-6/Netrin, SAX-3/Robo, and UNC-129/TGFbeta, and this process requires the functions of both ahr-1 and its transcription factor dimerization partner aha-1. We also document a role for ahr-1 during the differentiation of the neurons that contact the pseudocoelomic fluid. In ahr-1-deficient animals, these neurons are born but they do not express the cell-type-specific markers gcy-32:GFP and npr-1:GFP at appropriate levels. Additionally, we show that ahr-1 expression is regulated by the UNC-86 transcription factor. We propose that the AHR-1 transcriptional complex acts in combination with other intrinsic and extracellular factors to direct the differentiation of distinct neuronal subtypes. These data, when considered with the neurotoxic effects of AHR-activating pollutants, support the hypothesis that AHR has an evolutionarily conserved role in neuronal development.
Soybean is an important crop providing edible oil and protein source. Soybean oil and protein contents are quantitatively inherited and significantly affected by environmental factors. In this study, meta-analysis was conducted based on soybean physical maps to integrate quantitative trait loci (QTLs) from multiple experiments in different environments. Meta-QTLs for seed oil, fatty acid composition, and protein were identified. Of them, 11 meta-QTLs were located on hot regions for both seed oil and protein. Next, we selected 4 chromosome segment substitution lines with different seed oil and protein contents to characterize their 3 years of phenotype selection in the field. Using strand-specific RNA-sequencing analysis, we profile the time-course transcriptome patterns of soybean seeds at early maturity, middle maturity, and dry seed stages. Pairwise comparison and K-means clustering analysis revealed 7,482 differentially expressed genes and 45 expression patterns clusters. Weighted gene coexpression network analysis uncovered 46 modules of gene expression patterns. The 2 most significant coexpression networks were visualized, and 7 hub genes were identified that were involved in soybean oil and seed storage protein accumulation processes. Our results provided a transcriptome dataset for soybean seed development, and the candidate hub genes represent a foundation for further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.