The shelterin protein TRF2 is essential for chromosome-end protection. Depletion of TRF2 causes chromosome end-to-end fusions, initiating genomic instability that can be cancer promoting. Paradoxically, significant increased levels of TRF2 are observed in a subset of human cancers. Experimental overexpression of TRF2 has also been shown to induce telomere shortening, through an unknown mechanism. Here we report that TRF2 overexpression results in replication stalling in duplex telomeric repeat tracts and the subsequent formation of telomeric ultrafine anaphase bridges (UFBs), ultimately leading to stochastic loss of telomeric sequences. These TRF2 overexpression-induced telomere deletions generate chromosome fusions resembling those detected in human cancers and in mammalian cells containing critically shortened telomeres. Therefore, our findings have uncovered a second pathway by which altered TRF2 protein levels can induce end-to-end fusions. The observations also provide mechanistic insight into the molecular basis of genomic instability in tumour cells containing significantly increased TRF2 levels.
The double-stranded telomeric binding protein TRF2 is expressed in many human cancers at elevated levels. Moreover, experimental overexpression of TRF2 in human cells causes replication stalling in telomeric tracts, which leads to drastic telomere shortening and fusion of deprotected chromosome ends. To understand which end joining pathway is involved in mediating these chromosome fusions, we overexpressed TRF2 in human HCT116 cell lines that were deficient for the DNA Ligase 4 (Lig4)-dependent classical non-homologous end joining (C-NHEJ) or the DNA Ligase 3 (Lig3)-dependent alternative non-homologous end joining (A-NHEJ) pathway. Surprisingly, abrogation of either Lig4 or nuclear Lig3 significantly reduced inter-chromosomal fusion of drastically shortened telomeres, suggesting that both the C-NHEJ and A-NHEJ pathways are involved in mediating this type of fusion. Fusion between deprotected sister chromatids, however, only required the Lig3-dependent A-NHEJ pathway. Interestingly, a previous study reported similar end joining pathway requirements for the fusion of critically shortened telomeres during a telomere attrition-based cellular crisis. We speculate that, as in cellular crisis, the same repair pathway(s) may drive clonal and genomic evolution in human cancers containing elevated TRF2 levels.
ARTICLE HISTORY
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.