In this study, we aimed to investigate the protective effects and underlying mechanism of Lycium barbarum polysaccharide (LBP) on high-fat-induced nonalcoholic fatty liver disease (NAFLD). Recently, sirtuin 1 (SIRT1) has been shown to play an important role in the regulation of hepatocellular lipid metabolism. Here, we demonstrated that LBP up-regulates SIRT1 deacetylase activity and protein expression by enhancing the NAD+/NADH ratio. Subsequently, LBP promoted LKB1 deacetylation and AMPK phosphorylation via SIRT1-dependent signalling. We also found that LBP increases acetyl-CoA carboxylase (ACC) phosphorylation and adipose triglyceride lipase (ATGL) protein expression and decreases fatty acid synthase (FAS) by activating the SIRT1/LKB1/AMPK pathway in vitro and in vivo. However, SIRT1 small interfering RNA (siRNA)-mediated knockdown reversed the LBP-mediated effects on ACC, FAS and ATGL. Moreover, LBP elevated carnitine palmitoyltransferase-1 alpha (CPT-1α) expression by suppressing malonyl-CoA accumulation. Taken together, our data indicate that LBP plays a vital role in the regulation of hepatic lipid metabolism and that pharmacological activation of SIRT1 by LBP may be a strategy for the prevention of NAFLD.
Viroids are small, non-protein-coding RNAs which can induce disease symptoms in a variety of plant species. Potato (Solanum tuberosum L.) is the natural host of Potato spindle tuber viroid (PSTVd) where infection results in stunting, distortion of leaves and tubers and yield loss. Replication of PSTVd is accompanied by the accumulation of viroid-derived small RNAs (sRNAs) proposed to play a central role in disease symptom development. Here we report that PSTVd sRNAs direct RNA silencing in potato against StTCP23, a member of the TCP (teosinte branched1/Cycloidea/Proliferating cell factor) transcription factor family genes that play an important role in plant growth and development as well as hormonal regulation, especially in responses to gibberellic acid (GA). The StTCP23 transcript has 21-nucleotide sequence complementarity in its 3ʹ untranslated region with the virulence-modulating region (VMR) of PSTVd strain RG1, and was downregulated in PSTVd-infected potato plants. Analysis using 3ʹ RNA ligase-mediated rapid amplification of cDNA ends (3ʹ RLM RACE) confirmed cleavage of StTCP23 transcript at the expected sites within the complementarity with VMR-derived sRNAs. Expression of these VMR sRNA sequences as artificial miRNAs (amiRNAs) in transgenic potato plants resulted in phenotypes reminiscent of PSTVd-RG1-infected plants. Furthermore, the severity of the phenotypes displayed was correlated with the level of amiRNA accumulation and the degree of amiRNA-directed down-regulation of StTCP23. In addition, virus-induced gene silencing (VIGS) of StTCP23 in potato also resulted in PSTVd-like phenotypes. Consistent with the function of TCP family genes, amiRNA lines in which StTCP23 expression was silenced showed a decrease in GA levels as well as alterations to the expression of GA biosynthesis and signaling genes previously implicated in tuber development. Application of GA to the amiRNA plants minimized the PSTVd-like phenotypes. Taken together, our results indicate that sRNAs derived from the VMR of PSTVd-RG1 direct silencing of StTCP23 expression, thereby disrupting the signaling pathways regulating GA metabolism and leading to plant stunting and formation of small and spindle-shaped tubers.
The purpose of the present study is to determine if visfatin is involved in inflammation or apoptosis induced by LPS in rat. Forty Wistar rats were divided into four groups: saline group, LPS group, visfatin group and Visfatin + LPS co-stimulated group. Spleen samples from each group of rats were collected for study. The spleen structure was examined by histological imaging. Apoptosis was evaluated with TUNEL reaction. Caspase-3 was detected with immunohistochemistry and western blot. The apoptosis-related genes were detected by qPCR and inflammatory cytokines were tested by ELISA. Our main findings were as follows. (1) Macrophages were markedly increased in the visfatin group compared with the saline group. This finding was confirmed when spleen samples were examined with western blot using CD68 antibody. (2) Visfatin promoted the expression of CD68 and caspase-3 in rat spleen, whereas visfatin could inhibit the expression of CD68 and activated caspase-3 in spleen of LPS-induced acute inflammation. (3) Visfatin had a pro-apoptotic effect on normal rat spleen, whereas it exerted an anti-apoptotic effect during LPS-induced lymphocytes apoptosis in rat spleen. Moreover, the effect of visfatin on cell apoptosis was mediated by the mitochondrial pathway. (4) Visfatin could modulate both the anti-inflammatory cytokines and pro-inflammatory cytokines in rat spleen, such as IL-10, IL-4, IL-6, TNF-α and IL-1β. Taken together, we demonstrate that visfatin could participate in the inflammatory process in rat spleen by modulating the macrophages and inflammatory cytokines. Also, visfatin plays a dual role in the apoptosis in rat spleen, which is mediated by the mitochondrial pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.