In this paper, we focus on the existence of positive solutions for a boundary value problem of the changing-sign differential equation on time scales. By constructing a translation transformation and combining with the properties of the solution of the nonhomogeneous boundary value problem, we transfer the changing-sign problem to a positone problem, then by means of the known fixed-point theorem, several sufficient conditions for the existence of positive solutions are established for the case in which the nonlinear term of the equation may change sign.
In this paper, we consider the existence of positive solutions for a semipositone third-order nonlinear ordinary differential equation on time scales. In suitable growth conditions, by considering the properties on time scales and establishing a special cone, some new results on the existence of positive solutions are established when the nonlinearity is semipositone.
In this paper, we consider the existence of positive solutions for a singular tempered fractional equation with a p-Laplacian operator. By constructing a pair of suitable upper and lower solutions of the problem, some new results on the existence of positive solutions for the equation including singular and nonsingular cases are established. The asymptotic behavior of the solution is also derived, which falls in between two known curves. The interesting points of this paper are that the nonlinearity of the equation may be singular in time and space variables and the corresponding operator can have a singular kernel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.